Jump to the main content block

Professor Wang, Daw-Wei

王道維 教授
Daw-Wei, Wang

Research:Condensed Matter Theory and Interdiscisplinary Application of Artificial Intelligence
Office TEL:03-5731272 (R515, Physics Building)
E-mail:dwwang@phys.nthu.edu.tw, dawwei.wang@gmail.com

Research Group Website: http://www.phys.nthu.edu.tw/~aicmt/


  1. 1995/09-2000/06 Ph.D in Physics, University of Maryland, College Park, MD, USA
  2. 1991/09-1995/06 B.S. in Physics, National Tsing Hua University, Hsinchu, Taiwan

Current position

  1. 2021-present, Vice-Director, Center for the Application and Development of AI Humanility and Social Science, National Tsing Hua University, Hsinchu, Taiwan
  2. 2016-present, Director, Counseling Center, National Tsing Hua University, Hsinchu, Taiwan
  3. 2015-present, Joint Professor, Center for General Education, National Tsing Hua University, Hsinchu, Taiwan
  4. 2010-present, Professor, Department of Physics, National Tsing Hua University, Hsinchu, Taiwan


  1. 2015-2020, Vice-Director, Physics Division of National Center for Theoretical Sciences, Taiwan
  2. 2005-2010, Associate Professor, Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
  3. 2004-2005, Visiting Scholar, Physics Division, National Center for Theoretical Sciences, Hsinchu, Taiwan
  4. 2002-2004, Postdoctoral Fellow, Physics Department, Harvard University, Cambridge, MA, USA
  5. 2000-2002, Postdoctoral Researcher Associate, Theoretical Physics, University of Maryland, College Park, MD, USA

Honors and Awards

  1. Excellent Teacher in Social Practice 2023 (National Tsing Hua University)
  2. Silver Award in the SDG16 Category of the 3rd TSAA Taiwan Sustainable Action Award 2023
  3. Daniel Tsui Fellowship of Year 2008 (Hong Kong University)
  4. Ta-You Wu Memorial Award of Year 2008 (National Science Concil)
  5. Research Award for Junior Research Investigators of Year 2008 (Academia 
  6. Young Faculty Research Award of Year 2007 (National Tsing-Hua University)
  7. Theorist Award of Year 2007 (National Center for Theoretical Science) 

Research Fields

  1. Strongly correlated physics
  2. Systems of ultracold atoms
  3. (Topological) Superfluids and superconductors
  4. Artificial Intelligence and Machine Learning Applications (in Physics, Astronomy, Neuroscience, Legal, and Psychological aspects)

Research Interests and achievement

My research background was to study the strongly correlated physics and many-body theory in condensed matter systems, including semi-conductors, superconductors, topological materials, and systems of ultracold atoms/molecules. In recent years, I emphasize more on the many-body properties of long-ranged interaction effects for polar molecules and Rydberg gases. From 2018, I start working on Machine Learning (or called Artificial Intelligence) and have many collaboration with people in different fields, including physics, astronomy, brain neural sciences, and humanity and social sciences etc.

Interested students or researchers could find more information in my research group website: http://www.phys.nthu.edu.tw/~aicmt/

All Publications

  1. Yang-Sheng Chao, Chen-Zhi Su, Ting-Yuan Chen, Daw-Wei Wangand Kuo-Chuan Pan, Determining the Core Structure and Nuclear Equation of State of Rotating Core-collapse Supernovae with Gravitational Waves by Convolutional Neural Networks,Convolutional Neural Networks ,Astrophys. J.x939, 13(2022).
  2. Ching-Yu Huang, Jiapei Zhuang, Po-Yao Chang, and Daw-Wei Wang, Two-dimensional paired topological superfluids of Rydberg Fermi gases,Phys. Rev.106, 415403024506 (2022).
  3. Jiapei Zhuang, Ching-Yu Huang, Po-Yao Chang, andDaw-Wei Wang, 2D gapless topological superfluids generated by pairing phases,Journal of Physics: Condensed Matter34, 415403 (2022).
  4. Chen-Zhi Su, Kuan-Ting Chou, Hsuan-Pei Huang, Chiau-Jou Li, Ching-Che Charng, Chung-Chuan Lo and Daw-Wei Wang, Identification of Neuronal Polarity by Node-Based Machine Learning,Neuroinformatics 19, 669 (2021).
  5. Chi-Ting Ho and Daw-Wei Wang, Robust Identification of Topological Phase Transition by Self-supervised Machine Learning Approach, New J. Phys. 23 083021 (2021).
  6. Chen-Yu Liu and Daw-Wei Wang, Random Sampling Neural Network for Quantum Many-Body Problems, Phys. Rev. B 103, 205107 (2021).
  7. Yi-Lung Chiu, Chi-Ting Ho, Daw-Wei Wang and Shih-Ping Lai, Searching for Young Stellar Objects through SEDs by Machine Learning, Astronomy and Computing, 36, 100470 (2021).
  8. Bo Xiong, Tao Yang, Yu-Ju Lin and Daw-Wei Wang, Controllable splitting dynamics of a doubly quantized vortex in a ring-shaped condensate, Journal of Physics B: Atomic, Molecular and Optical Physics, 53, 075307 (2019).
  9. Ching-Yu Huang, Yen-Ting Lin, Hao Lee, Daw-Wei Wang, Quantum Degenerate Majorana Surface Zero Modes in Two-Dimensional Space, Phys. Rev. A 99, 043624 (2019).
  10. Hao Lee, S. I. Matveenko, Daw-Wei Wang, and G. V. Shlyapnikov, Fulde-Ferrell-Larkin-Ovchinnikov state in bilayer dipolar systems, Phys. Rev. A 96, 061602(R) (2017).
  11. Hao Lee*, Shiang Fang, and Daw-Wei Wang, Quantitative studies of the critical regime near the superfluid-to-Mott-insulator transition, Phys. Rev. A 95, 053622 (2017).
  12. Fabio Cinti,* Daw-Wei Wang, and Massimo Boninsegni, Phases of dipolar bosons in a bilayer geometry, Phys. Rev. A 95, 023622 (2017).
  13. Bo Xiong*, Jun-hui Zheng, Yu-Ju Lin, and Daw-Wei Wang, Spin-orbit coupling induced magnetic heterostructure in the bilayer Bose-Hubbard system. Phys. Rev. A 94, 063611 (2016).
  14. Jun-Hui Zheng*, Daw-Wei Wang, and Gediminas Juzeliunas, Superfluidity enhanced by spin-flip tunnelling in the presence of a magnetic field, Scientific Reports 6, 33320 (2016).
  15. Wei-Han Li*, Tzu-Chi Hsieh, Chung-Yu Mou, Daw-Wei Wang, Emergence of a Metallic Quantum Solid Phase in a Rydberg-Dressed Fermi Gases, Phys. Rev. Lett. 117, 035301 (2016) (selected as Editor’s Suggestion).
  16. Jhih-Shih You*, I-Kang Liu, Daw-Wei WangShih-Chuan Gou, and Congjun Wu, Unconventional Bose-Einstein Condensation in a System of Two-species Bosons in the p-orbital Bands of a Bipartite Lattice, Phys. Rev. A 93, 053623 (2016).
  17. Jun-hui Zheng*, Bo Xiong, Gediminas Juzeliūnas, and Daw-Wei Wang, Topological condensate in an interaction-induced gauge potential, Phys. Rev. A 92, 013604 (2015).
  18. Jhih-Shih You*, Daw-Wei Wang, and Miguel A. Cazalilla, Electron-spin to phonon coupling in graphene decorated with heavy adatoms, Phys. Rev. B 92, 035421 (2015).
  19. Bo Xiong*, Junhui Zheng, and Daw-Wei Wang, Nonadiabatic multichannel dynamics of a spin-orbit coupled condensate, Phys. Rev. A 91, 063602 (2015).
  20. H.-H. Jen*, and Daw-Wei Wang, Extracting Dynamical Green’s Function of Ultracold Quantum Gases via Electromagnetically Induced Transparency , J. of the Optical Society of America B 31, 2931 (2014).
  21. Bo Xiong*, H. H. Jen, and Daw-Wei Wang, Topological superfluid by blockade effects in a Rydberg-dressed Fermi gas, Phys. Rev. A 90, 013631 (2014).
  22. Jhih-Shih You* and Daw-Wei Wang, Many-body formation and dissociation of a dipolar chain crystal, New Journal of Physics 16, 073041 (2014).
  23. H.-H. Jen*, B. Xiong, Ite Yu, and Daw-Wei Wang, Electromagnetic induced transparency and slow light in interacting quantum degenerate atomic gases, J. of the Optical Society of America B 30, 2855 (2013).
  24. H. H. Jen* and Daw-Wei Wang,Theory of electromagnetically induced transparency in strongly correlated quantum gases, Phys. Rev. A 87, 061802(R) (2013).
  25. J.-S. You, H. Li, S. Fang, M.A. Cazalilla, and D.-W. Wang*, Tuning the Kosterlitz- Thouless transition to zero temperature in Anisotropic Boson Systems, Phys. Rev. A 86, 043612 (2012).
  26. C.-H. Wang, T.-M. Hong, R.-K. Lee*, and D.-W. Wang, Particle-wave duality in quantum tunneling of a bright soliton, Optics Express 20, 22675 (2012).
  27. S.-J. Huang, Y. - T. Hsu, H. Lee, Y.-C. Chen, A.G. Volosniev, N.T. Zinner, and D.-W. Wang*, Field-induced long-lived supermolecules, Phys. Rev. A 85, 055601 (2012).
  28. N. T. Zinner*, B. Wunsch, D. Pekker, and D.-W. Wang, BCS-BEC crossover in bilayers of cold fermionic polar molecules, Phys. Rev. A 85, 013603 (2012).
  29. N. T. Zinner*, B. Wunsch, I. B. Mekhov, S.-J. Huang, D.-W. Wang, and E. Demler, Few-Body Bound Complexes in One-dimensional Dipolar Gases and Non-Destructive Optical Detection, Phys. Rev. A 84, 063606 (2012).
  30. B. Wunsch*, N. T. Zinner, I. B. Mekhov, S.-J. Huang, D.-W. Wang, and E. Demler, Few-Body Bound States in Dipolar Gases and Their Detection, Phys. Rev. Lett. 107, 073201 (2011).
  31. Shiang Fang*, Chia-Ming Chung, Ping Nang Ma, Pochung Chen, and Daw-Wei Wang, Quantum Criticality from in-situ Density Imaging, Phys. Rev. A 83, 031605(R) (2011).
  32. Andrew C. Potter*, Erez Berg, Daw-Wei Wang, Bertrand I. Halperin, Eugene Demler, Superfluidity and dimerization in a multilayered system of fermionic polar molecules, Phys. Rev. Lett. 105, 220406 (2010).
  33. Yi-Ya Tian and Daw-Wei Wang*, Confinement induced quantum melting and polarization cooling for a 2D dipolar crystal, Europhys. Lett. 91, 66006 (2010).
  34. Shiang Fang, Ray-Kuang Lee, and Daw-Wei Wang*, Quantum fluctuations and condensate fraction during the time-of-flight expansion, Phys. Rev. A 82, 031601(R) (2010).
  35. Bin Wang*, Daw-Wei Wang, and S. Das Sarma, Bose-Fermi solid and its quantum melting in a one-dimensional optical lattice, Phys. Rev. A 82, 021602(R) (2010).
  36. Chao-Chun Huang, Daw-Wei Wang, and Wen-Chin Wu*, Condensate wave function and elementary excitations of bosonic polar molecules: Beyond the first Born approximation, Phys. Rev. A 81, 043629 (2010).
  37. C.-H. Lin, Y.-T. Hsu, H. Lee, and D.-W. Wang*, Interaction-induced ferroelectricity in the rotational states of polar molecules,Phys. Rev. A 81, 031601(R) (2010).
  38. D.-W. Wang*, Momentum distribution of noncondensate particles near the superfluid-to-Mott -insulator transition of bosonic atoms in a uniform optical lattice, Phys. Rev. A 80, 063620(2009).
  39. D.-W. Wang*, Momentum distribution of noncondensate particles near the superfluid-to-Mott -insulator transition of bosonic atoms in a uniform optical lattice, Phys. Rev. A 80, 063620(2009).
  40. Sheng-Min Shih and D.-W. Wang*, Pseudopotential of an interaction with a power-law decay in two-dimensional systems, Phys. Rev. A 79, 065603 (2009).
  41. Chi-Ming Chang, Wei-Chao Shen, Chen-Yen Lai, Pochung Chen, and D.-W. Wang*, Interaction-induced first-order correlation between spatially separated one-dimensional dipolar fermions, Phys. Rev.A 79, 053630(2009).
  42. Yi-Ya Tian*, Pochung Chen, D.-W. Wang, Universal dynamics of quantum spin decoherence in a spin bath, Phys. Rev. B 77, 174434(2008).
  43. D.-W. Wang*, An effective theory for strongly interacting polar molecules, New J. of Phys. 10, 053005(2008).
  44. G. Pupillo*, A. Griessner, A. Micheli, M. Ortner, D.-W. Wang, and P. Zoller, Cold Atoms and Molecules in Self-Assembled Dipolar Lattices, Phys. Rev. Lett. 100, 050402 (2008).
  45. L. Mathey*, D.-W. Wang, Phase diagrams of one-dimensional Bose-Fermi mixtures of ultra-cold atoms, Phys. Rev. A 75,013612(2007).
  46. D.-W. Wang*, Quantum phase transitions of polar molecules in bilayer system, Phys. Rev. Lett. 98,060403 (2007).
  47. D.-W. Wang*, M.D. Lukin and E.Demler,Quantum fluids of self-assembled chains of polar molecules, Phys. Rev. Lett. 97,180413(2006).
  48. D.-W. Wang*, Strong coupling theory of superfluidity in Bose-Fermi mixtures, Phys. Rev. Lett. 96,140404 (2006).
  49. D.-W. Wang*, E.G. Mishchenko, and E. Demler, Pseudospin ferromagnetism in coupled quantum wires, Phys. Rev. Lett. 95, 086802 (2005).
  50. D.-W. Wang*, M.D. Lukin, and E. Demler, Engineering Superfluidity in Bose-Fermi Mixtures of Ultracold Atoms, Phys. Rev. A, 72, 051604(R) (2005).
  51. A. Polkovnikov* and D.-W. Wang, Effect of quantum fluctuations on the dynamics of Bose-Einstein condensates in optical lattices, Phys. Rev. Lett. 93, 070401 (2004).
  52. L. Mathey*, D.-W. Wang, W. Hofstetter, M.D. Lukin, and E. Demler, Luttinger liquid of polarons in one-dimensional boson-fermion mixtures, Phys. Rev. Lett. 93, 120404 (2004).
  53. D.-W. Wang*, A.J. Millis and S. Das Sarma, Collective modes and Raman scattering in one dimensional electron systems, Solid State Commun. 131, 637-645 (2004). (Invited review article for New Advances on Collective Phenomena in One-dimensional Systems.)
  54. D.-W. Wang*, A.J. Millis, and S. Das Sarma, Resonant Raman scattering theory in Luttinger liquid model, Phys. Rev.B 70,165101(2004).
  55. D.-W. Wang*, E. Demler, and M. Lukin, Disordered Bose-Einstein condensates in quasi-one-dimensional magnetic microtraps, Phys. Rev. Lett. 92, 076802 (2004).
  56. D.-W. Wang*, E. Demler, and S. Das Sarma, Spontaneous Symmetry Breaking and Exotic Quantum Orders in Integer Quantum Hall systems under a Tilted Magnetic Field, Phys. Rev. B 68, 165303 (2003).
  57. D.-W. Wang*, A.J. Millis, and S. Das Sarma, Comment on "Dynamic correlations of the spinless Coulomb Luttinger liquid [Phys. Rev. B 65, 125109 (2002)]" , Phys. Rev. B 69, 167101 (2004).
  58. D.-W. Wang*, E. Demler, S. Das Sarma, and B.I. Halperin, Magnetoplasmon Excitations and Spin Density Instabilities in an Integer Quantum Hall Systems with a Tilted magnetic Field, Phys. Rev. B 66, 195334 (2002).
  59. E. Demler*, D.-W. Wang, S. Das Sarma, and B.I. Halperin, Quantum Hall Stripe Phases at Integer Filling Factors, Solid Sate Commun. 123, 243 (2003).
  60. D.-W. Wang* and S. Das Sarma, Resonant Raman Scattering by Charge Density and Single Particle Excitations in Semiconductor Nanostructures: A Generalized Interband-Resonant Random-Phase-Approximation Theory, Phys. Rev. B 65, 125322 (2002).
  61. D.-W. Wang* and S. Das Sarma, Elementary Electronic Excitations in One-dimensional Continuum and Lattice Systems, Phys. Rev. B 65 035103 (2002).
  62. D.-W. Wang* and S. Das Sarma, Many-body Effects on Excitonic Optical Properties of Photoexcited Semiconductor Quantum Wire Structures, Phys. Rev. B 64, 195313 (2001).
  63. D.-W. Wang*, A.J. Millis, and S. Das Sarma, Coulomb Luttinger Liquid, Phys. Rev. B 64, 193307 (2001)
  64. D.-W. Wang*, A.J. Millis, and S. Das Sarma, Where Is the Luttinger Liquid in One Dimensional Semiconductor Quantum Wire Structures?, Phys. Rev. Lett. 85, 4570 (2000)
  65. S. Das Sarma and D.-W. Wang*, Many-Body Renormalization of Semi- conductor Quantum Wire Excitons: Absorption, Gain, Binding, and Unbinding, Phys. Rev. Lett. 84, 2010 (2000).
  66. S. Das Sarma and D.-W. Wang*, Resonant Raman Scattering by Elementary Electronic Excitations in Semiconductor Structures, Phys. Rev. Lett. 83, 816 (1999).
  67. D.-W. Wang, Y.C. Chou and T.M. Hong*, Possible Origin of Convection Flow in Granular Systems, Europhys. Lett., 35, 333 (1996).


Click Num: