Jump to the main content block

Assistant Professor Hsiao, Tzu-kan

Assistant Professor
Hsiao, Tzu-kan 
Office:886-3-5742534 (PHYS R223)
Laboratory:Spin Quantum Information Lab
Lab Tel:

  1. 2013-2018 PhD Physics, University of Cambridge, UK
  2. 2010-2012 MSc Applied Physics, National Taiwan University, Taiwan
  3. 2004-2008 BSc Physics, National Tsing Hua University, Taiwan
  Professional Experience
Current position:
  1. Assistant Professor, Physics department of National Tsing-Hua University, Taiwan (02/2023 - )
  1. Postdoc researcher, QuTech at Delft University of Technology, Netherlands (05/2019 – 12/2022)
  Research Fields
  • Quantum information, quantum dot spin qubit, quantum simulation experiment, quantum acoustic-photonic hybrid device
  Research Interests and achievement

Research & Teaching Interests

Our research is focused quantum computation and quantum simulation with semiconductor gate-defined quantum dot arrays. Quantum dots are electrostatically-controlled nanostructures which can confine individual electron spins in semiconducting materials such as silicon (Si), germanium (Ge) and Gallium arsenide (GaAs). The number of charge and interaction strength can be tuned in situ by adjusting electrode voltages. Due to their long-lived coherence, in-situ tunability, small footprints, and potential of mass-production using industrial manufacturing technology, quantum dot arrays have become a promising platform for quantum computation and quantum simulation.

Topics we are interested in:
1) Spin qubit: Encode qubits in the states of electron spins. Develop scalable architecture for single-qubit control, two-qubit interaction, and qubit readout. Collaborate with semiconductor industry on foundry-made spin qubits.
2) Quantum simulation experiment: Study quantum many-body problems by performing experiments on quantum dot arrays. Realize programmable analog quantum simulators on intermediate-scale devices. Validate quantum simulators using Hamiltonian learning methods.
3) Spin-photon/phonon coupling: Couple spin states to microwave photon, optical photon and acoustic mode. This can be used as a mechanism for quantum transduction.

We welcome self-motivated PhD students, Master students, Bachelor students and research assistants to join our research team!
Contact email tkhsiao@phys.nthu.edu.tw
Selected Publications  * = Shared first authorship

&  T.-K. Hsiao*, P. Cova Fariña*, S. D. Oosterhout, D. Jirovec, X. Zhang, C. J. van Diepen, W. I. L. Lawrie, C.-A. Wang, A. Sammak, G. Scappucci, M. Veldhorst, E. Demler, and L. M. K. Vandersypen, Exciton Transport in a Germanium Quantum Dot Ladder, Physical Review X 14, 011048 (2024).

&  C. J. van Diepen*, T.-K. Hsiao*, U. Mukhopadhyay, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, Quantum Simulation of Antiferromagnetic Heisenberg Chain with Gate-Defined Quantum Dots, Physical Review X 11, 041025 (2021).

&  C. J. van Diepen, T.-K. Hsiao, U. Mukhopadhyay, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, Electron Cascade for Distant Spin Readout, Nature Communications 12, 77 (2021).

&  T.-K. Hsiao, C. J. van Diepen, U. Mukhopadhyay, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, Efficient Orthogonal Control of Tunnel Couplings in a Quantum Dot Array, Physical Review Applied 13, 054018 (2020).

&  T.-K. Hsiao, A. Rubino, Y. Chung, S.-K. Son, H. Hou, J. Pedrós, A. Nasir, G. Éthier-Majcher, M. J. Stanley, R. T. Phillips, T. A. Mitchell, J. P. Griffiths, I. Farrer, D. A. Ritchie, and C. J. B. Ford, Single-Photon Emission from Single-Electron Transport in a SAW-Driven Lateral Light-Emitting Diode, Nature Communications 11, 917 (2020).

&  T.-K. Hsiao, H.-K. Chang, S.-C. Liou, M.-W. Chu, S.-C. Lee, and C.-W. Chang, Observation of Room-Temperature Ballistic Thermal Conduction Persisting over 8.3 Μm in SiGe Nanowires., Nature Nanotechnology 8, 6 (2013)



Click Num: