
Qualifying Exam - Classical Mechanics

Problem 1. (40 pts) Fundamentals.

(a) (10 pts) Show that one can use the Poisson bracket [f, Lz] = 0 to illustrate f is an invariant

quantity of the system under an infinitesimal rotation around the z axis.

(b) (10 pts) A particle of mass m slides under the action of gravity and without friction on

a parabolic wire, as shown below. The parabola has the shape y = x2. Use the method

of Lagrange multipliers to incorporate constraint and to show that the constraint force is

perpendicular to the wire.

(c) (20 pts) Use the Hamilton-Jacobi equation to solve the trajectory r⃗(t) for a projectile

motion of a particle shooting off from the origin at t = 0 with the initial speed v0 and the

launch angle π/4 above the horizontal.

Problem 2. (20 pts) A bead on a rotating hoop: Consider a bead of mass m constrained

to move on a massless circular hoop of radius R. The hoop rotates around its central axis

(aligned with the z-axis, the direction of gravity) with a fixed angular velocity Ω, as shown in

the figure below.

(a) (10 pts) Write the Lagrangian for the system and find any constants of the motion.

(b) (10 pts) When the hoop rotates slowly, the system exhibits a stable equilibrium point at

θ = 0. However, as the angular velocity Ω increases beyond a critical value Ωc, this equilibrium

point becomes unstable. Determine the critical angular velocity Ωc. In addition, find the new

stable equilibrium point for the case where Ω > Ωc.
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Problem 3. (40 pts) Coupled oscillation and normal modes.

Two identical blocks of mass m are connected by three identical massless springs of spring

constant k, as shown in the figure below. The natural length of springs is (ℓ/2), therefore,

springs are under tension. In addition, the blocks are constrained to move along frictionless

vertical tracks. Clearly, the blocks are subject to both gravity and restoring forces of springs.

For simplicity, assume that vertical displacements of these two blocks are small.

(a) (15 pts) Let’s define vertical displacements of the blocks away from the horizontal to be

y1 and y2. Write down the Lagrangian of the system. And use the fact that y1/ℓ ≪ 1

and y2/ℓ ≪ 1 to obtain two linear coupled Euler-Lagrange equations for y1 and y2,

respectively.

(b) (15 pts) Find the normal mode frequencies and its corresponding eigenvectors.

(c) (10 pts) If, initially, two blocks are displaced by (y1, y2) = (−mg/k,−mg/k) and released

from rest. Obtain the solution for y1(t) and y2(t).
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Electrodynamics Qualifying Exams

February 2024

You must provide the details or reasonings to justify your answers.

Problem 1: Simple Questions (5% each = 35% total)

1. Write down the four Maxwell’s equations. Specify all the numerical values of the
relevant physical constants and the units you adopt.

2. Why are electromagnetic waves transverse in vacuum?

3. In one particular inertial frame, the electric and magnetic fields are measured as
E⃗ = (9,−1, 7) and cB⃗ = (5, 0,−2) in some units, respectively. For the same field

configuration can you measure in a different frame E⃗ ′ = (2, 0, 4) and cB⃗′ = (3, 5, 2)?

4. Explain the terms Lorentz gauge and Coulomb gauge.

5. Explain the term Green’s function.

6. Explain the terms Dirichlet and Neumann boundary conditions.

7. How many real degrees of freedom has a quadrupole moment? Explain your answer.

Problem 2: Simple derivations (10% each = 20% total)

1. Derive the conservation of charge from the Maxwell equations.

2. Derive the wave equation for electromagnetic fields from the Maxwell equations.

Problem 3: Moving charge (15%)

What are a point charge’s electric and magnetic fields at a constant velocity v⃗ ?

Problem 4: Image Charges (18%)

Consider two grounded metal plates at a right angle meeting at the origin. Their position
is given by the relation y = ±x for all z and x > 0. On the surface of the metal plates and
at infinity the potential vanishes. In the volume there is a point charge q at r⃗1 = (d, 0, 0).



1. (4%) Find the electric potential ϕ(r⃗) in the volume V enclosed by the plates and
check that it fulfills the boundary conditions.

2. (6%) Calculate the surface charge density

σ = −ϵ0 n̂ · ∇⃗ϕ , (1)

with n̂ the normal vector on the surface S pointing out of the volume.

3. (5%) Calculate the total charge

Q =

∫
σ dS (2)

on the plates. You can use Gauss’ theorem to calculate Q.

4. (3%) Calculate the direction of the force on the point charge. Is the point charge
pulled towards or away from the origin?

Problem 5: Multipole Moments (12%)

Consider a homogeneously charged rectangular cuboid with charge Q and side lengths a,
b, b with a > b. Choose the origin of the coordinate system to be in the center of the
cuboid and put the axes along the symmetry axes of the object. The length of the cuboid
in z-direction is a.

1. (3%) Write down an expression for the charge density, ϱ.

2. (4%) Calculate either the spherical or the Cartesian monopole moment.

3. (5%) Calculate either the spherical or the Cartesian dipole moments.



Quantum Mechanics Spring 2024
Qualifying Exam

You must show your work. No credits will be given if you don’t
show how you get your answers.
Boldface characters like v refer to vectors (= v⃗).

You may use the following formula:

• The Schrödinger equation:

ih̄
d |ψ(t)⟩
dt

= Ĥ |ψ(t)⟩

where Ĥ is the Hamiltonian
p̂2

2µ
+ V (r̂) and µ is the mass of the particle.

For energy eigenstates, this reduces to the time-independent Schrödinger
equation (in spherical coordinates)

− h̄
2

2µ
(
∂2

∂r2
+

2

r

∂

∂r
)ψ(r) + ⟨r| L̂2

2µr2
|ψ⟩+ V (r)ψ(r) = Eψ(r)

L̂ is the orbital angular momentum operator, L̂ = r̂× p̂.

• For a 1-D simple harmonic oscillator (SHO), Ĥ =
p̂x

2

2m
+

1

2
mω2x̂2:

The raising and lowering operators are

â† =

√
mω

2h̄
(x̂− i

mω
p̂x), â =

√
mω

2h̄
(x̂+

i

mω
p̂x)

and [â, â†] = 1. The operators get their names from the facts that

â† |n⟩ =
√
n+ 1 |n+ 1⟩ , â |n⟩ =

√
n |n− 1⟩ ,

where |n⟩’s are the energy eigenstates of the 1D SHO.

• The Pauli matrices:

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
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• Time-independent Perturbation: Consider Ĥ = Ĥ0 + Ĥ1, where Ĥ1 is
a small perturbation. The first order energy correction to the n-th energy
eigenvalue of Ĥ0 is

E(1)
n =

〈
n(0)

∣∣∣Ĥ1

∣∣∣n(0)〉
where

∣∣n(0)〉 is the n-th eigenstate of Ĥ0.

• Time-dependent Perturbation: Consider Ĥ = Ĥ0 + Ĥ1(t), where Ĥ1(t)
is a small perturbation. The state |ψ(t)⟩ can be expanded in terms of the
unperturbed eigenstates

∣∣n(0)〉:
|ψ(t)⟩ =

∑
n=0

dn(t)e
−i

E
(0)
n t
h̄

∣∣∣n(0)〉 .
If initially (t = 0) the particle is at state

∣∣i(0)〉, the transition amplitude for
the particle to be in state

∣∣f (0)〉 at time t is

df (t) = δfi −
i

h̄

∫ t

0
dt′

〈
f (0)

∣∣∣ Ĥ1(t
′)
∣∣∣i(0)〉 ei (E(0)

f
−E

(0)
i

)

h̄
t′ .

• 3-D Scattering: The wave function ψ(r) of a particle scattering off a po-
tential V (r) has the asymptotic behavior

ψ(r) = Aeikz +Af(θ, ϕ)
eikr

r
, r → ∞,

where the incident wave is in the z-direction.

• Born Approximation: Useful for high-energy scattering.

f(θ, ϕ) = − m

2πh̄2

∫
d3r′V (r′)e−iq·r′ ,

where m is the mass of the scattering particle, and h̄q = h̄kf − h̄ki is the
momentum transferred from the initial state eiki·r to the final state eikf ·r.

• Partial wave expansion: Useful for low-energy scattering. For spherically-
symmetric V (r),

f(θ) =
∞∑
l=0

(2l + 1)
eiδl

k
sin δl Pl(cos θ),

where δl is the phase shift of the l-th partial wave, and Pl(cos θ) is the
Legendre polynomial, which relates to the spherical harmonics Yl,m(θ, ϕ) as

Yl,0(θ, ϕ) =

√
2l + 1

4π
Pl(cos θ).
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1. Briefly answer the following questions. You must explain your rea-
soning.:

(a) Write down the Hermitian conjugate of an operator Ô, with Ô

being (a) 3x
d

dx
and (b) [Â, B̂], where Â and B̂ are Hermitian

operators. (5 points)

(b) If a system is in an eigenstate of total angular momentum Ĵ
2

and
angular momentum along the z-axis Ĵz, what are the expectation
values of angular momentum along the x- and the y-axis, ⟨Jx⟩ and
⟨Jy⟩, and the squares ⟨J2

x⟩ and ⟨J2
y ⟩, for this system? (5 points)

(c) Consider a system made of two spin-1/2 particles. The system is
in the state

|Φ⟩ = 1√
3
(|++⟩+ |+−⟩+ |−+⟩).

(+,− refer to spin along the z-axis). Are the two particles entan-
gled? (3 points)

(d) What is the expectation value of the total angular momentum of
the system in part (c)? (3 points)

(e) Can the system in part (c) be a system of two electrons? (2
points)

2. SHO and perturbation:

(a) Consider a 1D SHO with mass m and frequency ω. Suppose
a perturbation of the form H1 = bx̂4 (b>0) is added to the 1D
SHO. Find out the first order energy correction to the n-th energy
level of the SHO. What is the condition for this first order result
to be a valid energy correction? (5 points)

(b) From part (a), explain why the first order energy correction must
break down when n is large enough, no matter how small b is. (2
points)

(c) If we make the perturbation time-dependent, H1 = bx̂4 exp
(
− t2

τ2

)
(τ > 0), starting from t = −∞. The SHO was originally at the
ground state at t = −∞. What is the probability for the SHO to
transit to an excited state |n⟩ at t = +∞? (5 points)

3. 3D Scattering: Consider a particle of mass m and energy E scattering
off a hard sphere in 3D. The potential is thus

V (r) =
{ ∞, r ≤ R

0, elsewhere

Consider only the s-wave scattering.
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(a) Show that the radial part (R(r)) of the wave fucntion for r > R
is of the form

U(r) = rR(r) = sin(kr + δ0),

where k =

√
2mE

h̄
and δ0 is the phase shift. (5 points)

(b) Use the boundary condition at r = R, prove that sin2 δ0 =
sin2 kR. (5 points)

(c) Evaluate the total cross section σ of the s-wave scattering, and
show that σ ≈ 4πR2 for low-energy scattering. (10 points)
[Note: The Legendre polynomial Pl(cos θ) = 1 for l = 0.]

4. The magnetic moment µ of a charged particle of spin S, massm, charge
q, and g-factor g is µ =

gq

2mc
S. (5 points each)

(a) Prove the Heisenberg equation of motion: Consider the expecta-
tion value of an operator Â for a system in a state |ψ⟩. Use the
Schrödinger equation to prove that

d

dt
⟨A⟩ = ⟨∂A

∂t
⟩+ 1

ih̄
⟨[Â, Ĥ]⟩,

where Ĥ is the Hamiltonian.
(b) The particle is placed under a uniform magnetic field B with

a Hamiltonian Ĥ = −µ · B. Find the equations of motion of
⟨Sx⟩, ⟨Sy⟩, and ⟨Sz⟩ of the particle.

(c) Suppose the particle is a spin-1/2 particle, and the magnetic field
is B = B0ẑ where B0 is a constant. At t = 0, the particle is
measured to be spin-up along the y-axis. Express ⟨Sx⟩ and ⟨Sz⟩
as a function of time t.

5. Spin-Orbit interactions:

(a) What is the spin-orbit interaction? Please briefly explain the
origin, and show that for each energy level of a hydrogen atom,

ESO ∼ α2E(0),

where ESO is the additional energy from the spin-orbit interaction,

α =
e2

h̄c
is the fine structure constant, and E(0) is the energy

eigenvalue from the Coulomb potential. (10 points)
[Hint: The magnetic field produced by a charge q with velocity

v is B(r) =
q

c

v × r

r3
, and E(0) ∼ α2(mec

2) for hydrogen atoms,
where me is the mass of the electron.]
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(b) Consider an electron in a hydrogen atom in the state Y +1
1 |+⟩,

express the result of L̂ · ŜY +1
1 |+⟩ in terms of Y m

l and (|+⟩ , |−⟩).
(5 points)

6. Probability current:

(a) Consider a particle of mass m in 3D, show that integrating its
probability current all over the space gives∫

d3r j(r, t) =
⟨p⟩
m
,

where ⟨p⟩ is the expectation value of its momentum. (5 points)

(b) Suppose the particle is moving under an external magnetic field
B with a vector potential A. The Hamiltonian is thus

H =
(pc − qA/c)2

2m
,

where pc is the canonical momentum. Prove that the probability
current for the particle under the magnetic field is

j =
h̄

m
Im(ψ∗∇ψ)− q

mc
A|ψ|2.

[Note: pc and A in general do not commute.] (10 points)

(c) Compare the result in part (a) and part (b), is ⟨p⟩ in part (a) the
same as pc in part (b)? Explain your reasoning. (5 points)
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Qualifying Examination – Statistical Mechanics

Feb 24-25, 2024

Please explain the logic behind your answers.

Problem 1. Canonical ensemble at fixed temperature T (20 points):

1. Single spin case:

(a) Consider an Ising spin with µ = 1 with proper unit, σ1 = +1 or −1, in the external
field, h. The energy of this system is H1 = −hσ1. What are the possible energies of this
system? What are the microscopic configurations of the Ising spin for the corresponding
energies?

(b) Write down the partition function Z1 of this single spin system.

2. (a) Consider three such Ising spins decoupled from each other. That is, the total energy
of the three spin system is H = −h(σ1 + σ2 + σ3). What are the possible microscopic
configuration of the spins? You can imagine the spins are sitting at real space, so they
are distinguishable according to their coordinates. What are the corresponding energies
for each configuration?

(b) Write down the partition function Z of this three-spin system.

3. Show that Z = (Z1)(Z2)(Z3) = (Z1)
3. Here Zi is the partition function of the i-th spin.

4. Suppose the Ising spin σ1 does not like to align with spin σ2, usually it means the sys-
tem pays more energy to aligning the direction of σ1 and σ2. We can describe such effect
by including a term Jσ1σ2 with J > 0. That is, the total energy is now described by
H ′ = −h (σ1 + σ2 + σ3) + Jσ1σ2. We can construct the corresponding partition function Z ′

accordingly. Do you expect to have a factorizable structure as Z ′ = (Z ′
1)(Z

′
2)(Z

′
3)? Why? or

Why not? Here Z ′
i is the partition function formed by the degree of freedom σi.

Problem 2. Ising model(15 points): Considering the Ising model H = −J
∑

⟨i,j⟩ σiσj where σi =
±1 and ⟨i, j⟩ denotes the nearest-neighbor pairs of sites.

1. For a system of coordinate number z, use mean-field approximation to find the critical tem-
perature Tc below which spontaneous magnetization exists.

2. Show that the magnetic susceptibility χ ∝ (T − Tc)
−1 at T ≫ Tc

3. Use entropy argument to show that in 1D there is no phase transition, i.e., Tc = 0.

Problem 3. Free bosons (15 points): Consider a number conserved Bose gas with energy disper-
sion εp = C|p|α in d dimension space:
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1. Show that there will be a Bose-Einstein condensation if d > α.

2. Show that the critical temperature scales with the total number of particles, N , as Tc ∝ Nα/d.
Hint: you do not need to do the full calculation and may use dimensional argument for the
density of states first.

Problem 4. Fermions in a two-level system (10 points): Consider a system of N independent
fermions. Assume that the single-particle Hamiltonian have only two energy levels, with energy 0
and ϵ. However, the two levels have degeneracies n0 and n1, which are both integers.

1. For the case of n0 = n1 = 3 with N = 3. Find the chemical potential µ, as a function of
temperature. What is the Fermi energy ϵF = µ(T = 0)?

2. For the case of arbitrary value of n0 and n1, but with N = n0. Find the chemical potential
µ, as a function of temperature at the low temperature limit. What is the Fermi energy
ϵF = µ(T = 0)?

Problem 5. Freely Jointed Chain (Gaussian model) and its mean field picture (40 points)
Polymers are large(high molar mass) molecules composed of a large number of monomers bonded

together to form a chain. In reality, the monomers are bounded covalently. That is, the potential
energy between two monomers should be a complex function of the bonding angle between two
nearby monomers. Let’s make some assumptions to simplify our problem which leads to the freely
jointed model. (We might over simplify the problem but let’s just try it first to get a feeling about
what kind of problem we are facing. Then we can ask how to put back more ingredients to make
our analysis more realistic.)

• We assume the joint of the monomers can rotate freely, i.e. the potential energy is independent
of the bonding angle, ϕ, between two nearby monomers.

• We assume the monomers can overlap with each other in space and have no interaction
between each other.

The model with above two assumptions is the freely jointed chain model. It is the idealization of
polymers analogous to ideal gas model for gases.

Figure 1: Schematic picture of a single chain polymer molecular formed by the monomers repre-
sented by the grey oval.

A key property that we are interested in is the size of the polymer. Usually the polymer coils
up. The way they coils up will be a competition between the entropy and the energetics. Therefore,
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the size of the polymer is not simply the number of monomers, N , times the size of the monomer, a.
Instead, we need to use some statistical description to characterize the size of the polymer. Usually,
we use the root-mean-square end-to-end distance, ⟨r2⟩1/2, as a measure for the size of the polymer.
Here, r is the distance from one end of the polymer to the other in three-dimensional space. The
average is taken over all possible ways the polymer coils. One of the configuration is simple, if all
the monomers are aligned in one direction, the end-to-end distance rstraight = Na. However, this
is just one of the possible value of r, once the polymer coils, ⟨r2⟩1/2 < Na.

1. It is interesting to observe that the freely jointed model in one-dimension is actually the
simple one-dimensional random walk we discussed during the lecture. The step size is just
the size of the monomer. The one-dimensional constraint restricts ϕ = 0/π. Let’s start in this
simple limit and use x to represent the end-to-end distance in one-dimensional case. Derive
the probability distribution P1D(x,N) when the number of monomers N is large.

2. For the three-dimensional case, we assume the orientation is completely random and the vector
from monomer i and the vector for monomer i + 1 are uncorrelated. i.e. ⟨di · dj⟩i ̸=j = 0.
Therefore, we expect N to be distributed evenly Nx = Ny = Nz = N

3 . Here, Nx is a rough
definition of the monomer belongs to the monomer in x direction. We can simply consider the
projection of the monomer to the x, y, z direction. If the projection to x direction is has the
largest size, we said it is a x monomer that should be counted in Nx. Derive ⟨r2⟩

1
2 and express

it using N and a. This is a simple estimation for the size of the polymer. (Sometimes you will
see people use the radius of gyration r2g to estimate the size of the polymer. rg is the average
distance between monomers and the center of mass. It turns out the length scale, ⟨r2g⟩, will
be proportional with ⟨r2⟩. We will not discuss the calculation here, but just mention the fact
that using the root mean square of the end-to-end distance capture the essential information
for the size of the polymer.)

3. Now we have a rough idea about the freely jointed model. Let’s assume we are in three-
dimensional world. In the last problem, we should be able to have the probability distribution
function P3D(r,N). Using the microcanonical ensemble, we should expect the probability
distribution to related to the phase space volume as

P3D(r,N) =
Ω(r,N)∫
drΩ(r,N)

≡ Ω(r,N)

AN
. (1)

Here, Ω(r,N) is the phase space volume for the size N polymer with the end-to-end distance
r. AN is the integral of Ω(r,N) over r. Use (1) to find the expression of the entropy, S(r,N),
for the size N polymer with the end-to-end distance r using N, a, r, kB and AN .

4. With the expression of entropy, we can derive the Helmholtz free energy of the system using
F (r,N) = U(r,N) − TS(r,N). Here, we are considering the freely jointed model, so there
is no internal energy. The Helmholtz free energy is just F (r,N) = −TS(r,N). Here is
the interesting part, the free energy depends on r just like the spring with elastic energy
(E ∝ k(δx)2). We can have the elasticity constant of the polymer. Find the expression of the
elasticity constant k for the polymer described by the freely jointed model.

5. A rubber is an composite object with entangled polymers. They are difficult to anlayze during
the qualify exam. However, from the simple calculation we achieved here we can explain some
interesting physics. Consider a piece of rubber hanging a massive object below it. Suppose
the rubber is strong enough such that the massive object just hang in the air. Next, if we
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heat up the rubber (hopefully we did not melt it.), what would you expect? Will the massive
object be lifted higher? Or the other way around?

weight

heat up

Figure 2: Schematic plot for the massive object hanging in the air.

6. Till now, we assume the non-interacting limit. So the free energy only consider the entropic
effect. Now, we would like to extend the understanding to the case that the monomers can
actually interact with each other. In order to proceed, we make the following assumptions:

• In Fig. 1, we can clearly see the monomer is a rod like object which does not have rota-
tional symmetry (it is not a sphere). However, let’s put that aside and assume the
monomers are spherically symmetric objects with volume v that forbidden
the overlap of two monomers.

• We can define the packing ratio, µ, of the monomers for the polymer as

µ =
Nv

r3
. (2)

We drop the irrelevant coefficients just to get an estimation about the physics. It is the
ratio of the total volume of the monomers and the volume given by the ”size” of the
polymer.

Since the interaction avoids two monomers to overlap in space. We can assume that the
interaction between the monomers are pair-wise interaction. (They are just one monomer
interacts with another one to satisfy the no-overlapping condition.) Estimate the interaction
energy, Uint(r,N, T ), at temperature T for a polymer with length N at large N . (Hint: Think
about the meaning of the packing ratio. How to estimate the pair-wise interactions using the
packing ratio?)

7. Before we do any calculation, let’s think about the effect of each term. The entropic contri-
bution favors the value of small r to minimize the improved free energy. On the other hand,
since the monomers repel each other due to the interaction energy, the Uint(r,N, T ) term
prefers the value of large r in order to minimize the Fimproved(r,N, T ). Therefore, the two ef-
fects competes with each other and fix the characteristic size of the polymer with length scale
r∗. Use the above result to improve the free energy estimation by including the interaction
between the monomers. We should have Fimproved(r,N, T ) = Uint(r,N, T )+Fentropic(r,N, T ).
Find r∗ as a function of v, a,N .
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8. rideal ∼ N
1
2 , r∗ ∼ Nα. Compare rideal and r∗ at large N limit. Is α > 1

2 , α < 1
2 or α = 1

2?
Why is it a reasonable result?
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