
Qualifying Exam - Classical Mechanics - Fall, 2024

Problem 1. (40 pts) Two particles are confined to move on frictionless tracks. As depicted in

the figure below, m1 is only allowed to move in the x-direction while m2 is only allowed to move

in the y-direction. These two masses are subjected to gravity g⃗ = −gŷ, and they are connected

by a spring of negligible mass, spring constant k and natural length ℓ0. For simplicity, assume

that these two particles have the same mass m. Answer the following questions.

(a) (20 pts) Obtain the equations of motion for the system with no constraint forces

involved.

(b) (10 pts) In the limit of extremely stiff spring (i.e., fixed spring length, k → ∞), obtain the

solution of the system.

(c) (10 pts) Now consider the case where the gravity is negligible (i.e., g = 0) but the spring

has a finite stiffness, analyze the motion of the system for the non-trivial initial condition that

both particles are moving initially.

Problem 2. (20 pts) Over-damped dynamics and Brownian motion on the diffusive time

scale. Let’s consider a particle of mass m moving in one dimension in a viscous solvent. The

particle is subject to Brownian forces, ⟨f(t)⟩ = 0 and ⟨f(t) · f(t′)⟩ = 2γkBT δ(t − t′), where

⟨ ⟩ denotes the ensemble average (i.e., average over many realizations) and γ is the damping

coefficient. The equation of motion of the particle is usually written as ẋ = f(t)/γ.

(a) (10 pts) Provide a justification for dropping out the ẍ term in the equation of motion.

(b) (10 pts) Derive the mean squared displacement of the particle.

Problem 3. (40 pts) Coupled oscillation and normal modes.

Two identical blocks of mass m are connected by three identical massless springs of spring

constant k, as shown in the figure below. The natural length of springs is (ℓ/2), therefore,
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springs are under tension. In addition, the blocks are constrained to move along frictionless

vertical tracks. Clearly, the blocks are subject to both gravity and restoring forces of springs.

For simplicity, assume that vertical displacements of these two blocks are small.

(a) (15 pts) Let’s define vertical displacements of the blocks away from the horizontal to be

y1 and y2. Write down the Lagrangian of the system. And use the fact that y1/ℓ ≪ 1

and y2/ℓ ≪ 1 to obtain two linear coupled Euler-Lagrange equations for y1 and y2,

respectively.

(b) (15 pts) Find the normal mode frequencies and its corresponding eigenvectors.

(c) (10 pts) If, initially, two blocks are displaced by (y1, y2) = (−mg/k,−mg/k) and released

from rest. Obtain the solution for y1(t) and y2(t).
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Electrodynamics Qualifying Exams

September 2024

You must provide the details or reasonings to justify your answers.

Problem 1: Simple Questions (5% each = 35% total)

1. Write down the four Maxwell’s equations and specify your unit system.

2. Why are electromagnetic waves transverse in vacuum?

3. In one particular inertial frame, the electric and magnetic fields are measured as
E⃗ = (9,−1, 7) and c B⃗ = (5, 0,−2) in some units, respectively. For the same field

configuration can you measure in a different frame E⃗ ′ = (2, 0, 4) and c B⃗′ = (3, 5, 2)?

4. Explain the terms Lorentz gauge and Coulomb gauge.

5. Explain the term Green’s function.

6. Explain the terms Dirichlet and Neumann boundary conditions.

7. How many real degrees of freedom has a quadrupole moment? Explain your answer.

Problem 2: Simple derivations (10% each = 20% total)

1. Derive the conservation of charge from the Maxwell equations.

2. Derive the wave equation for electromagnetic fields from the Maxwell equations.

Problem 3: Moving charge (15%)

What are a point charge’s electric and magnetic fields at a constant velocity v⃗ ?

Problem 4: Image Charges (18%)

Consider as volume the whole three-dimensional space. Centered at the origin is a grounded
metal sphere with radius R. At x⃗ = (0, 0, d) we position a point charge with charge q. On
the surface of the metal sphere and at x⃗ → ∞ the electric potential vanishes.



1. (5%) Find the electric potential outside the sphere and check that it fulfills the
boundary conditions.

2. (8%) Calculate the surface charge density

σ = −ϵ0 n̂ · ∇⃗ϕ , (1)

with n̂ the normal vector on the surface S.

3. (5%) Calculate the total charge

Q =

∫
σ dS (2)

on the sphere. You can use Gauss’ theorem to calculate Q.

Problem 5: Multipole Moments (12%)

Consider a homogeneously charged rectangular cuboid with charge Q and side lengths a,
b, b with a > b. Choose the origin of the coordinate system to be in the center of the
cuboid and put the axes along the symmetry axes of the object. The length of the cuboid
in z-direction is a.

1. (3%) Write down an expression for the charge density, ϱ.

2. (4%) Calculate the spherical and the Cartesian monopole moment.

3. (5%) Calculate the spherical and the Cartesian dipole moments.



Quantum Mechanics Fall 2024
Qualifying Exam

You must show your work. No credits will be given if you don’t
show how you get your answers.
Boldface characters like v refer to vectors (= v⃗).

You may use the following formula:

• The Schrödinger equation:

ih̄
d |ψ(t)⟩
dt

= Ĥ |ψ(t)⟩

where Ĥ is the Hamiltonian
p̂2

2µ
+ V (r̂) and µ is the mass of the particle.

For energy eigenstates, this reduces to the time-independent Schrödinger
equation Ĥψ(r) = Eψ(r), where ψ(r) is the energy eigenfunction and E is
the energy eigenvalue.

• For a spherically symmetric potential V (r) = V (r), the energy eigenfunc-
tions can be written as ψ(r) = R(r)Y (θ, ϕ), and the (radial) time-indepedent
Schrödinger equation is

− h̄2

2m

d2u(r)

dr2
+
l(l + 1)h̄2

2mr2
u(r) + V (r)u(r) = Eu(r),

where m is the mass, l is the quantum number for total angular momentum,
and u(r) = rR(r). For realistic cases, u(0) = 0.

• The general solution for a free particle in 3D is

ul(ρ) = Al ρjl(ρ) +Bl ρnl(ρ),

where ρ = kr, and the energy of the free particle is E =
h̄2k2

2m
. jl and nl are

the spherical Bessel and Neumann functions, respectively. In particular,

j0(ρ) =
sin ρ

ρ
, n0(ρ) = −cos ρ

ρ
.
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• For a 1-D simple harmonic oscillator (SHO), Ĥ =
p̂x

2

2m
+

1

2
mω2x̂2:

The raising and lowering operators are

â† =

√
mω

2h̄
(x̂− i

mω
p̂x), â =

√
mω

2h̄
(x̂+

i

mω
p̂x)

and [â, â†] = 1. The operators get their names from the facts that

â† |n⟩ =
√
n+ 1 |n+ 1⟩ , â |n⟩ =

√
n |n− 1⟩ ,

where |n⟩’s are the energy eigenstates of the 1D SHO.

• The Pauli matrices:

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
• Time-independent Perturbation: Consider Ĥ = Ĥ0 + Ĥ1, where Ĥ1 is
a small perturbation. The first order energy correction to the n-th energy
eigenvalue of Ĥ0 is

E(1)
n =

〈
n(0)

∣∣∣Ĥ1

∣∣∣n(0)〉
where

∣∣n(0)〉 is the n-th eigenstate of Ĥ0.

• Time-dependent Perturbation: Consider Ĥ = Ĥ0 + Ĥ1(t), where Ĥ1(t)
is a small perturbation. The state |ψ(t)⟩ can be expanded in terms of the
unperturbed eigenstates

∣∣n(0)〉:
|ψ(t)⟩ =

∑
n=0

cn(t)e
−i

E
(0)
n t
h̄

∣∣∣n(0)〉 .
If initially (t = 0) the particle is at state

∣∣i(0)〉, the transition amplitude for
the particle to be in state

∣∣f (0)〉 at time t is

cf (t) = δfi −
i

h̄

∫ t

0
dt′

〈
f (0)

∣∣∣ Ĥ1(t
′)
∣∣∣i(0)〉 ei (E(0)

f
−E

(0)
i

)

h̄
t′ .

• 3-D Scattering: The wave function ψ(r) of a particle scattering off a po-
tential V (r) has the asymptotic behavior

ψ(r) = Aeikz +Af(θ, ϕ)
eikr

r
, r → ∞,

where the incident wave is in the z-direction. The differential cross section
dσ = |f(θ, ϕ)|2 dΩ. f(θ, ϕ) is called the scattering amplitude, and dσ/dΩ is
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often also called the differential cross section.

• The Born series: The solution of ψ(r) scattering off a finite-ranged po-
tential V (r) can be expanded as

ψ(r) = eiki·r +

∫
d3r′G(r− r′)U(r′)eiki·r′

+

∫
d3r′G(r− r′)U(r′)

∫
d3r′′G(r′ − r′′)U(r′′)eiki·r′′ + . . . ,

where eiki·r is the initial (incident) state, U(r) = 2mV (r)/h̄2, andG(r−r′) =

− 1

4π

eik|r−r′|

|r− r′|
is the Green’s function. Under the condition |r| ≫ |r′|, the first

order Born approximation leads to

f(θ, ϕ) = − m

2πh̄2

∫
d3r′V (r′)eiq·r

′
,

where m is the mass of the scattering particle, and h̄q = h̄ki − h̄kf is the
momentum transferred from the initial state eiki·r to the final state eikf ·r.

• Partial wave expansion: Useful for low-energy scattering. For spherically-
symmetric V (r), the asymptotic form of the wave function ψ(r) can be ex-
panded in spherical waves of different quantum number l

ψ(r) =

√
4π

k

∑
l

√
2l + 1 il Yl,0(θ)

1

2i

[
ei(kr−

lπ
2
)+2iδl

r
− e−i(kr− lπ

2
)

r

]
,

where δl is the phase shift for the l-th partial wave. The phase shifts are
related to the scattering amplitude as

f(θ) =

√
4π

k

∞∑
l=0

√
2l + 1 eiδl sin δl Yl,0(θ),

and the total cross section

σ =
∑
l

σl, σl =
4π

k2
(2l + 1) sin2 δl.

At r ≫ r0 (the effective range of the potential), the form of the wave function
for the l-th partial wave is ψ(r) = [Aljl(kr) + Blnl(kr)]Yl,0, and the phase
shift can be derived from tan δl = −Bl/Al.
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1. Consider a system made of two spin-1/2 particles: (5 points each)

(a) The system is in the state

|Φ⟩ = 1√
3
(|++⟩+ |+−⟩+ |−+⟩).

(+,− refer to spin along the z-axis). Are the two particles entan-
gled? Explain your reasoning.

(b) What is the expectation value of the total angular momentum of
the system in part (a)?

(c) Can the system in part (a) be a system of two electrons? Explain
your reasoning.

2. The magnetic moment µ of a charged particle of spin S, massm, charge
q, and g-factor g is µ =

gq

2mc
S.

(a) Prove the Heisenberg equation of motion: Consider the expecta-
tion value of an operator Â for a system in a state |ψ⟩. Use the
Schrödinger equation to prove that

d

dt
⟨A⟩ = ⟨∂A

∂t
⟩+ 1

ih̄
⟨[Â, Ĥ]⟩,

where Ĥ is the Hamiltonian. (5 points)

(b) Suppose the particle is a spin-1/2 particle, and it is placed under
a magnetic field B = B0ẑ where B0 is a constant. At t = 0, the
particle is measured to be spin-up along the y-axis. Express ⟨Sx⟩
and ⟨Sz⟩ as a function of time t. (10 points)
[Hint: the angular momentum operators satisfy the commutation
relation [Ĵi, Ĵj ] = ih̄εijkĴk.]

3. 1D Simple Harmonic Oscillator (SHO): Consider a 1D SHO with mass
m and frequency ω.

(a) A coherent state |α⟩ is defined as the eigenstate of the lowering
operator â |α⟩ = α |α⟩. Do α’s have to be real? Explain why. (3
points)

(b) Show that ∆x∆px for a coherent state saturates the lowest limit
allowed by the Uncertainty Principle. (8 points)

(c) What is the expectation value of energy for a coherent state |α⟩?
(4 points)

(d) Use the information from part (a) and (b), derive ∆x∆px for the
ground state of a 1D SHO. (3 points)
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(e) The 1D SHO is initially at the ground state. At t = 0 a decaying
external force (not potential! ) F0e

−t/τ is turned on (F0 and τ
are constants). To the lowest order in F0, what is the probability
to find the SHO in an excited state (please specify for any n ≥ 1)
at some later time t1? (4 points)

(f) Show that your result in part (e) becomes independent of t1 when
the force decays very fast. Is this behavior reasonable? (3 points)

4. A hydrogen atom is placed under a constant external electric field along
the z-axis:

E = E0k̂,

The electron has charge −e, e > 0,and |n, l,m⟩ denotes the eigenstates
of the hydrogen atom without any perturbation. Consider the effects
up to the first order in E0. (5 points each)

(a) Evaluate the commutator [L̂z, ẑ], and use the result to explain the
following selection rule: ⟨n′, l′,m′| ẑ |n, l,m⟩ = 0 if m ̸= m′.

(b) Make use of the selection rule from part (a), and the fact the
parity of the spherical harmonics Yl,m(θ, ϕ) is (−1)l (you don’t
need to prove this), write down the perturbing Hamiltonian due
to E as a matrix in the basis of |n, l,m⟩ for n = 2. Express the
matrix in terms of ∆, which denotes one of the non-zero matrix
elements (you don’t need to derive it. Just write down an
expression for ∆.)
[Note: You only need one symbol ∆. Explain why.]

(c) What is the energy spectrum of the n = 2 states of this hydro-
gen atom, taking into account the first order energy corrections
due the external electric field? Again you only need to use ∆ to
express the answers.

5. 3D Scattering:

(a) Use the Born approximation, compute the differential cross
section for a 3D potential well

V (r) =
{ −V0, r ≤ a

0, elsewhere

where V0 > 0. (5 points)

[Hint:
d sinx

dx
= cosx,

d cosx

dx
= − sinx.]

(b) Show that if the incident particles have low energies, the differ-
ential cross section becomes isotropic. You need to specify what
you mean by ”low energies”. (5 points)
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[Hint: For small x, sinx ≈ x− x3

3!
, cosx ≈ 1− x2

2!
.]

(c) Compute the total cross section for the potential in part (a) at low
energies using the Born approximation. What is the condition for
your result in to be valid? (5 points)

(d) Show that for the s-wave (l = 0), the asymptotic form of the wave
function ψ(r) for r ≫ r0 (r0 is the effective range of the potential)
is of the form

ψ(r) =
C

r
sin (kr + δ0),

where C is an overall constant, and δ0 is the phase shift of the
s-wave. (5 points)

(e) Use the result in part (d), evaluate the s-wave scattering cross
section of the potential in part (a) using the partial wave anal-
ysis method . Is your result compatible with your answer in part
(c)? (15 points)
[Hint: Useful the trigonometric identities for parts (d) and (e):

sin (A+B) = sinA cosB + cosA sinB

tan (A+B) =
tanA+ tanB

1− tanA tanB

and tanx ≈ x ≈ sinx for small x.]
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Qualifying Examination – Statistical Mechanics

Sep 06, 2024

Please explain the logic behind your answers.

Problem 1. Bosons in Harmonic traps(30 points): Let us consider a particle in the anisotropic
harmonic-oscillator potential V (r) = 1

2

(
Kxx

2 +Kyy
2 +Kzz

2
)
. Therefore, we can consider the

system as three independent harmonic oscillators in three different directions x, y and z. The
corresponding energy levels can be parameterized by three non negative integers (nx, ny, nz) as

E(nx, ny, nz) =

(
nx +

1

2

)
ℏωx +

(
ny +

1

2

)
ℏωy +

(
nz +

1

2

)
ℏωz. (1)

1. Let us consider ni are continuous variables and neglect the zero-point energies (The 1
2ℏωi in

E(nx, ny, nz).), we can simplify the energy as E ≈ εx+ εy + εz where εi = niℏωi. If we define
G(E) as the number of states below energy a specific energy E. Derive the expression of
G(E) in terms of E, ωx, ωy, ωz and ℏ. (Hint: There are several way to derive this result. One
approach is to consider the problem in the (nx, ny, nz) space. What is the geometric meaning
of the states below energy E?)

2. Another way to understand density of state is g(E) = dG(E)
dE . Use the above expression to get

the density of states.

3. We can evaluate the particles in the excited states using

Nex =

∫ ∞

0
dEg(E)

1

eE/kBT − 1
. (2)

Here, we assume Nex reaches its maximum for µ = 0. The definition of the transition
temperature, Tc, of Bose-Einstein condensation is when the total number of particles can be
just accommodated in excited states. That is,

N = Nex(T = Tc, µ = 0) =

∫ ∞

0
dEg(E)

1

eE/kBT − 1
. (3)

∫∞
0 dxxα−1

ex−1 = Γ(α)ζ(α). Here, ζ(α) =
∑∞

n=1 n
−α is the Riemann zeta function and Γ(α) is

the gamma function. Derive the transition temperature of this system and express the result
using N,ωx, ωy, ωz and the Riemann zeta function.

Problem 2. Free fermion problem(10 points): Let the density of states of the electrons in a
system be assumed to be a constant D for ε > 0 (D = 0 for ε < 0). Here, ε represents the energy.
We assume the total number of electrons be equal to N . Here N = D

∫∞
0

1
eβ(ε−µ)+1

dε.

1. Calculate the chemical potential µ at T = 0K.
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2. When the system is in the regime of quantum degeneracy, estimate or derive the expression
of the specific heat and show that it is proportional to T .

Problem 3. Two-level system(15 points): Consider a system of N distinguishable particles,
which have two energy levels, E0 = −µB and E1 = µB, for each particles. Here µ is the magnetic
moment and B is the magnetic field. The particles populate the energy levels according to the
classical distribution law.

1. Calculate the average energy of such system at temperature T

2. Calculate the specific heat of the system

3. Calculate the magnetic susceptibility

Problem 4. Freely Jointed Chain (Gaussian model) and its mean field picture (40 points)
Polymers are large(high molar mass) molecules composed of a large number of monomers bonded

together to form a chain. In reality, the monomers are bounded covalently. That is, the potential
energy between two monomers should be a complex function of the bonding angle between two
nearby monomers. Let’s make some assumptions to simplify our problem which leads to the freely
jointed model. (We might over simplify the problem but let’s just try it first to get a feeling about
what kind of problem we are facing. Then we can ask how to put back more ingredients to make
our analysis more realistic.)

• We assume the joint of the monomers can rotate freely, i.e. the potential energy is independent
of the bonding angle, ϕ, between two nearby monomers.

• We assume the monomers can overlap with each other in space and have no interaction
between each other.

The model with above two assumptions is the freely jointed chain model. It is the idealization of
polymers analogous to ideal gas model for gases.

Figure 1: Schematic picture of a single chain polymer molecular formed by the monomers repre-
sented by the grey oval.

A key property that we are interested in is the size of the polymer. Usually the polymer coils
up. The way they coils up will be a competition between the entropy and the energetics. Therefore,
the size of the polymer is not simply the number of monomers, N , times the size of the monomer, a.
Instead, we need to use some statistical description to characterize the size of the polymer. Usually,
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we use the root-mean-square end-to-end distance, ⟨r2⟩1/2, as a measure for the size of the polymer.
Here, r is the distance from one end of the polymer to the other in three-dimensional space. The
average is taken over all possible ways the polymer coils. One of the configuration is simple, if all
the monomers are aligned in one direction, the end-to-end distance rstraight = Na. However, this
is just one of the possible value of r, once the polymer coils, ⟨r2⟩1/2 < Na.

1. It is interesting to observe that the freely jointed model in one-dimension is actually the
simple one-dimensional random walk we discussed during the lecture. The step size is just
the size of the monomer. The one-dimensional constraint restricts ϕ = 0/π. Let’s start in this
simple limit and use x to represent the end-to-end distance in one-dimensional case. Derive
the probability distribution P1D(x,N) when the number of monomers N is large.

2. For the three-dimensional case, we assume the orientation is completely random and the vector
from monomer i and the vector for monomer i + 1 are uncorrelated. i.e. ⟨di · dj⟩i ̸=j = 0.
Therefore, we expect N to be distributed evenly Nx = Ny = Nz = N

3 . Here, Nx is a rough
definition of the monomer belongs to the monomer in x direction. We can simply consider the
projection of the monomer to the x, y, z direction. If the projection to x direction is has the
largest size, we said it is a x monomer that should be counted in Nx. Derive ⟨r2⟩

1
2 and express

it using N and a. This is a simple estimation for the size of the polymer. (Sometimes you will
see people use the radius of gyration r2g to estimate the size of the polymer. rg is the average
distance between monomers and the center of mass. It turns out the length scale, ⟨r2g⟩, will
be proportional with ⟨r2⟩. We will not discuss the calculation here, but just mention the fact
that using the root mean square of the end-to-end distance capture the essential information
for the size of the polymer.)

3. Now we have a rough idea about the freely jointed model. Let’s assume we are in three-
dimensional world. In the last problem, we should be able to have the probability distribution
function P3D(r,N). Using the microcanonical ensemble, we should expect the probability
distribution to related to the phase space volume as

P3D(r,N) =
Ω(r,N)∫
drΩ(r,N)

≡ Ω(r,N)

AN
. (4)

Here, Ω(r,N) is the phase space volume for the size N polymer with the end-to-end distance
r. AN is the integral of Ω(r,N) over r. Use (4) to find the expression of the entropy, S(r,N),
for the size N polymer with the end-to-end distance r using N, a, r, kB and AN .

4. With the expression of entropy, we can derive the Helmholtz free energy of the system using
F (r,N) = U(r,N) − TS(r,N). Here, we are considering the freely jointed model, so there
is no internal energy. The Helmholtz free energy is just F (r,N) = −TS(r,N). Here is
the interesting part, the free energy depends on r just like the spring with elastic energy
(E ∝ k(δx)2). We can have the elasticity constant of the polymer. Find the expression of the
elasticity constant k for the polymer described by the freely jointed model.

5. A rubber is an composite object with entangled polymers. They are difficult to anlayze during
the qualify exam. However, from the simple calculation we achieved here we can explain some
interesting physics. Consider a piece of rubber hanging a massive object below it. Suppose
the rubber is strong enough such that the massive object just hang in the air. Next, if we
heat up the rubber (hopefully we did not melt it.), what would you expect? Will the massive
object be lifted higher? Or the other way around?
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weight

heat up

Figure 2: Schematic plot for the massive object hanging in the air.

6. Till now, we assume the non-interacting limit. So the free energy only consider the entropic
effect. Now, we would like to extend the understanding to the case that the monomers can
actually interact with each other. In order to proceed, we make the following assumptions:

• In Fig. 1, we can clearly see the monomer is a rod like object which does not have rota-
tional symmetry (it is not a sphere). However, let’s put that aside and assume the
monomers are spherically symmetric objects with volume v that forbidden
the overlap of two monomers.

• We can define the packing ratio, µ, of the monomers for the polymer as

µ =
Nv

r3
. (5)

We drop the irrelevant coefficients just to get an estimation about the physics. It is the
ratio of the total volume of the monomers and the volume given by the ”size” of the
polymer.

Since the interaction avoids two monomers to overlap in space. We can assume that the
interaction between the monomers are pair-wise interaction. (They are just one monomer
interacts with another one to satisfy the no-overlapping condition.) Estimate the interaction
energy, Uint(r,N, T ), at temperature T for a polymer with length N at large N . (Hint: Think
about the meaning of the packing ratio. How to estimate the pair-wise interactions using the
packing ratio?)

7. Before we do any calculation, let’s think about the effect of each term. The entropic contri-
bution favors the value of small r to minimize the improved free energy. On the other hand,
since the monomers repel each other due to the interaction energy, the Uint(r,N, T ) term
prefers the value of large r in order to minimize the Fimproved(r,N, T ). Therefore, the two ef-
fects competes with each other and fix the characteristic size of the polymer with length scale
r∗. Use the above result to improve the free energy estimation by including the interaction
between the monomers. We should have Fimproved(r,N, T ) = Uint(r,N, T )+Fentropic(r,N, T ).
Find r∗ as a function of v, a,N .

8. rideal ∼ N
1
2 , r∗ ∼ Nα. Compare rideal and r∗ at large N limit. Is α > 1

2 , α < 1
2 or α = 1

2?
Why is it a reasonable result?
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Problem 5. Ising model(15 points): Considering the Ising model H = −J
∑

⟨i,j⟩ σiσj where σi =
±1 and ⟨i, j⟩ denotes the nearest-neighbor pairs of sites.

1. For a system of coordinate number z, use mean-field approximation to find the critical tem-
perature Tc below which spontaneous magnetization exists.

2. Show that the magnetic susceptibility χ ∝ (T − Tc)
−1 at T ≫ Tc

3. Use entropy argument to show that in 1D there is no phase transition, i.e., Tc = 0.
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