
Electrodynamics Qualifying Exams

September 2023

You must provide the details or reasonings to justify your answers.

Problem 1: Simple Questions (5% each = 35% total)

1. Write down the four Maxwell’s equations. Specify all the numerical values of the
relevant physical constants and the units you adopt.

2. Why are electromagnetic waves transverse in the vacuum?

3. In one particular inertial frame, the electric and magnetic fields are measured as
E⃗ = (9,−1, 7) and cB⃗ = (5, 0,−2) in some units, respectively. For the same field

configuration can you measure in a different frame E⃗ ′ = (2, 0, 4) and cB⃗′ = (3, 5, 2)?

4. Explain the terms Lorentz gauge and Coulomb gauge.

5. Explain the term Green’s function.

6. Explain the terms Dirichlet and Neumann boundary conditions.

7. How many real degrees of freedom has a dipole moment? Explain your answer.

Problem 2: Simple derivations (10% each = 20% total)

1. Derive the conservation of charge from the Maxwell equations.

2. Derive the wave equation for electromagnetic fields from the Maxwell equations.

Problem 3: Moving charge (15%)

What are a point charge’s electric and magnetic fields at a constant velocity v⃗ ?

Problem 4: Image Charges (18%)

Consider as volume the whole three-dimensional space. Centered at the origin is a grounded
metal sphere with radius R. At x⃗ = (0, 0, d) we position a point charge with charge q. On
the surface of the metal sphere and at x⃗ → ∞ the electric potential vanishes.



1. (5%) Find the electric potential outside the sphere and check that it fulfills the
boundary conditions.

2. (8%) Calculate the surface charge density

σ = −ϵ0 n̂ · ∇⃗ϕ , (1)

with n̂ the normal vector on the surface S.

3. (5%) Calculate the total charge

Q =

∫
σ dS (2)

on the sphere. You can use Gauss’ theorem to calculate Q.

Problem 5: Multipole Moments (12%)

Consider two homogeneously charged, solid hemispheres with radius R which are separated
in the x-y-plane by a negligible slit. The upper hemisphere shall have total charge +Q and
the lower hemisphere shall have total charge −Q.

1. (3%) Write down an expression for the charge density, ϱ, of the two hemispheres.

2. (4%) Calculate either the spherical or the Cartesian monopole moment.

3. (5%) Calculate either the spherical or the Cartesian dipole moment.



Quantum Mechanics Fall 2023
Qualifying Exam

You must show your work. No credits will be given if you don’t
show how you get your answers.
Boldface characters like v refer to vectors (= ~v).

You may use the following formula:

• The Schrödinger equation:

ih̄
d |ψ(t)〉
dt

= Ĥ |ψ(t)〉

where Ĥ is the Hamiltonian
p̂2

2µ
+ V (r̂) and µ is the mass of the particle.

For energy eigenstates, this reduces to the time-independent Schrödinger
equation (in spherical coordinates)

− h̄
2

2µ
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∂
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)ψ(r) + 〈r| L̂2

2µr2
|ψ〉+ V (r)ψ(r) = Eψ(r)

L̂ is the orbital angular momentum operator, L̂ = r̂× p̂.

• For a 1-D simple harmonic oscillator (SHO), Ĥ =
p̂x

2

2m
+

1

2
mω2x̂2:

The raising and lowering operators are

â† =

√
mω

2h̄
(x̂− i

mω
p̂x), â =

√
mω

2h̄
(x̂+

i

mω
p̂x)

and [â, â†] = 1. The operators get their names from the facts that

â† |n〉 =
√
n+ 1 |n+ 1〉 , â |n〉 =

√
n |n− 1〉 ,

where |n〉’s are the energy eigenstates of the 1D SHO.

• The Pauli matrices:

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
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• Time-independent Perturbation: Consider Ĥ = Ĥ0 + Ĥ1, where Ĥ1 is
a small perturbation. The first order energy correction to the n-th energy
eigenvalue of Ĥ0 is

E(1)
n =

〈
n(0)

∣∣∣Ĥ1

∣∣∣n(0)
〉

where
∣∣n(0)

〉
is the n-th eigenstate of Ĥ0.

The second order energy correction is

E(2)
n =

∑
m 6=n

|
〈
n(0)

∣∣ Ĥ1

∣∣m(0)
〉
|2

E
(0)
n − E(0)

m

.

• Time-dependent Perturbation: Consider Ĥ = Ĥ0 + Ĥ1(t), where Ĥ1(t)
is a small perturbation. The state |ψ(t)〉 can be expanded in terms of the
unperturbed eigenstates

∣∣n(0)
〉
:

|ψ(t)〉 =
∑
n=0

dn(t)e−i
E

(0)
n t
h̄

∣∣∣n(0)
〉
.

If initially (t = 0) the particle is at state
∣∣i(0)

〉
, the transition amplitude for

the particle to be in state
∣∣f (0)

〉
at time t is

df (t) = δfi −
i

h̄

∫ t

0
dt′
〈
f (0)

∣∣∣ Ĥ1(t′)
∣∣∣i(0)

〉
ei

(E
(0)
f
−E

(0)
i

)

h̄
t′ .

• 3-D Scattering: The wave function ψ(r) of a particle scattering off a po-
tential V (r) has the asymptotic behavior

ψ(r) = Aeikz +Af(θ, φ)
eikr

r
, r →∞,

where the incident wave is in the z-direction.

• Born Approximation: Useful for high-energy scattering.

f(θ, φ) = − m

2πh̄2

∫
d3r′V (r′)e−iq·r

′
,

where m is the mass of the scattering particle, and h̄q = h̄kf − h̄ki is the
momentum transferred from the initial state eiki·r to the final state eikf ·r.

• Partial wave expansion: Useful for low-energy scattering. For spherically-
symmetric V (r),

f(θ) =

∞∑
l=0

(2l + 1)
eiδl

k
sin δl Pl(cos θ),
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where δl is the phase shift of the l-th partial wave, and Pl(cos θ) is the
Legendre polynomial, which relates to the spherical harmonics Yl,m(θ, φ) as

Yl,0(θ, φ) =

√
2l + 1

4π
Pl(cos θ).

• Useful Gaussian integrals:∫ ∞
−∞

exp
(
−ax2 + bx

)
dx = exp

(
b2

4a

)√
π

a
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1. Spin-1/2 systems: (5 points each)

(a) Explicitly derive (not just plug in the answer) the eigenvector
|+n〉 of the spin momentum operator Ŝn = Ŝ·n̂ along a unit vector
n̂ = (sin θ cosφ, sin θ sinφ, cos θ). Show that (in the Sz-basis)

|+n〉 =

 cos θ2

sin θ
2e
iφ


up to an overall phase.
[Hint: You can use the half-angle formula

sin θ = 2 sin
θ

2
cos

θ

2
, cos θ = cos2 θ

2
− sin2 θ

2
.

]

(b) Consider the spin singlet state formed by two spin-1/2 particles.
Alice and Bob measure the spin of each particle along the unit
vectors a and b, respectively. Let S(1)

a is the spin of Particle 1
along a, and S(2)

b is the spin of Particle 2 along b. Use the result
from part (a), show that the expectation value of the product of
Alice and Bob’s measurements

〈S(1)
a S

(2)
b 〉 = − h̄

2

4
cos θab,

where θab is the angle between a and b.

(c) At time t = 0, an electron and a positron are in a state with
total spin = 0. The electron-positron pair are placed in a uniform
magnetic field along the z-axis, B = B0k̂. Find the state as a
function of time. Show that the total spin of the system oscillates
between spin-0 and spin-1, and find the period of oscillation.
[Note: Express your answer in terms of the electron charge −e
(e > 0), mass me, g-factor g, and other constants in this problem.
The magnetic moment µ of a charged particle of spin S, mass m,
charge q, and g-factor g is µ =

gq

2mc
S.]

2. 1D Simple Harmonic Oscillator (SHO): Consider a 1D SHO with mass
m and frequency ω.

(a) A coherent state |α〉 is defined as the eigenstate of the lowering
operator â |α〉 = α |α〉. Do α’s have to be real? Explain why. (3
points)
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(b) Show that ∆x∆px for a coherent state saturates the lowest limit
allowed by the Uncertainty Principle. (8 points)

(c) What is the expectation value of energy for a coherent state |α〉?
(4 points)

(d) Use the information from part (a) and (b), derive ∆x∆px for the
ground state of a 1D SHO. (3 points)

3. SHO and perturbation:

(a) Consider a 1D SHO with mass m and frequency ω. Suppose
a perturbation of the form H1 = bx̂4 (b>0) is added to the 1D
SHO. Find out the first order energy correction to the n-th energy
level of the SHO. What is the condition for this first order result
to be a valid energy correction? (5 points)

(b) From part (a), explain why the first order energy correction must
break down when n is large enough, no matter how small b is. (2
points)

(c) If we make the perturbation time-dependent, H1 = bx̂4 exp
(
− t2

τ2

)
(τ > 0), starting from t = −∞. The SHO was originally at the
ground state at t = −∞. What is the probability for the SHO to
transit to an excited state |n〉 at t = +∞? (5 points)

4. A particle of mass m is placed under a 3D potential V (r) which is a
central potential that vanishes as r → ∞. The wave function of the
particle is of the form

ψE(r) = A exp

(
− r

a0

)
,

where a0 > 0 is a constant. (5 points each)

(a) What is the expectation value of angular momentum of the par-
ticle?

(b) If ψE is an energy eigenstate, find out the energy eigenvalue E.

(c) Having found E, what is V (r) at finite r.

5. Angular momentum:

(a) Consider a particle described by a wave function localized at r =
(x0, y0, z0), and its total angular momentum is J = (Jx, Jy, Jz).
Define an operator Ô = exp

(
iJzφh̄

)
x2 exp

(
−iJzφh̄

)
, write down

the expectation value 〈O〉 for the state of the particle in terms of
x0, y0 and φ. (5 points)
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(b) What is the spin-orbit interaction? Please briefly explain the
origin, and show that for each energy level of a hydrogen atom,

ESO ∼ α2E(0),

where ESO is the additional energy from the spin-orbit interaction,

α =
e2

h̄c
is the fine structure constant, and E(0) is the energy

eigenvalue from the Coulomb potential. (10 points)
[Hint: The magnetic field produced by a charge q with velocity

v is B(r) =
q

c

v × r

r3
, and E(0) ∼ α2(mec

2) for hydrogen atoms,
where me is the mass of the electron.]

(c) Consider an electron in a hydrogen atom in the state Y +1
1 |+〉,

express the result of L̂ · ŜY +1
1 |+〉 in terms of Y m

l and (|+〉 , |−〉).
(5 points)

6. 3D Scattering: Consider a particle of mass m moving in 3D scattering
against a potential V (r) = V0 exp

(
−r2/R2

)
, where V0 and R > 0 are

constants.

(a) Use the Born approximation, calculate the the scattering ampli-
tude f(θ) for the potential V (r) = V0 exp

(
−r2/R2

)
. (10 points)

[Note: You should express your answer in terms of the initial
k(= |ki|) and θ.]

(b) Derive the s-wave scattering length in the limit of zero energy for
the potential V (r) = V0 exp

(
−r2/R2

)
.(10 points)
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Qualification Exam. Problem Set  
Classical Mechanics 

Fall, 2023 
 
 
1. For a one-dimensional system with the Hamiltonian 

𝐻𝐻 =
𝑝𝑝2

2
−

1
2𝑞𝑞2

 

(a)、 (10 points) Show that there is a constant of the motion 

𝐷𝐷 =
𝑝𝑝𝑞𝑞
2
− 𝐻𝐻𝐻𝐻 

(b)、 (10 points) As a generalization of part (a), for motion in a plane with the 
Hamiltonian 

𝐻𝐻 = |𝒑𝒑|𝑛𝑛 − 𝑎𝑎𝑟𝑟𝑛𝑛 
where 𝒑𝒑  is the vector of the momenta conjugate to the Cartesian coordinates, 
show that there is a constant of the motion 

𝐷𝐷 =
𝒑𝒑 ∙ 𝒓𝒓
𝑛𝑛

− 𝐻𝐻𝐻𝐻. 

2. (20 points) Two particles of mass 𝑚𝑚 move in one dimension at the junction of 
three springs, as shown in the figure.  The springs all have unstretched lengths 
equal to 𝑎𝑎 , and the force constants are 𝑘𝑘, 3𝑘𝑘, 𝑘𝑘 , respectively.  Find the 
eigenfrequencies and normal modes of the system. 

 
3. (20 points) A rope of indefinite length passes 

freely over pulleys at heights 𝑦𝑦𝐴𝐴 and 𝑦𝑦𝐵𝐵above the 
plane surface of earth, with a horizontal distance 
𝑥𝑥𝐵𝐵 − 𝑥𝑥𝐴𝐴 between them.   Find the curve between 
the pulleys assuming the rope has a uniform linear 
mass density.  

 
 
4. A particle of mass 𝑚𝑚 described by one generalized coordinate 𝑞𝑞 moves under the 

influence of a potential 𝑉𝑉(𝑞𝑞) and a damping force   proportional to its velocity as 
 −2𝑚𝑚𝑚𝑚𝑞𝑞 .   

(a)、 (5 points) Show that the following Lagrangian 𝐿𝐿 = 𝑒𝑒2𝛾𝛾𝛾𝛾 �1
2
𝑚𝑚�̇�𝑞2 − 𝑉𝑉(𝑞𝑞)� 



gives the desired equation of motion. 
(b)、 (5 points) Obtain the Hamiltonian 𝐻𝐻(𝑞𝑞,𝑝𝑝, 𝐻𝐻) for this system. 
(c)、 (5 points) Consider the following generating generating function 

𝐹𝐹 = 𝑒𝑒𝛾𝛾𝛾𝛾𝑞𝑞𝑞𝑞 − 𝑄𝑄𝑞𝑞 
Obtain the canonical transformation from (𝑞𝑞,𝑝𝑝)  to (𝑄𝑄,𝑞𝑞)  and the 
transformed Hamiltonian 𝐾𝐾(𝑄𝑄,𝑞𝑞, 𝐻𝐻). 

(d)、 (5 points) Pick  𝑉𝑉(𝑞𝑞) = 1
2
𝑚𝑚𝜔𝜔2𝑞𝑞2 as a harmonic potential with a natural 

frequency 𝜔𝜔. Show that the transformed Hamiltonian yields a constant of 
motion. 

5. A particle of mass m in a Kepler central potential 𝑉𝑉(𝑟𝑟) = −𝑘𝑘 𝑟𝑟�   has orbits 

described by 1
𝑟𝑟

= 𝑚𝑚𝑚𝑚
𝑙𝑙2

(1 + 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖), where 𝜖𝜖 = �1 + 2𝑙𝑙2𝐸𝐸
𝑚𝑚𝑚𝑚2

  

(a)、  (10 points) Suppose the particle is initially in a parabolic orbit. An impulse 
is applied at periastron (𝜖𝜖 = 0) to place the particle in a circular orbit. Give 
the energy and angular momentum of the circular orbit in terms of the 
energy and angular momentum of the initial parabolic orbit, and 
characterize completely the required impulse. Draw an effective-potential 
diagram that shows the transition between the two orbits. 

(b)、 (10 points) Suppose the particle is initially in an arbitrary elliptical orbit. 
An impulse is applied at θ = π/2 to place the particle in a circular orbit. Give 
the energy and angular momentum of the circular orbit in terms of the 
energy and angular momentum of the initial orbit, and characterize 
completely the required impulse. Draw an effective potential diagram that 
shows the transition between the two orbits. 



Qualifying Examination – Statistical Mechanics

Sep 16-17, 2023

Please explain the logic behind your answers.

Problem 1. Freely Jointed Chain (Gaussian model) and its mean field picture (40 points)
Polymers are large(high molar mass) molecules composed of a large number of monomers bonded

together to form a chain. In reality, the monomers are bounded covalently. That is, the potential
energy between two monomers should be a complex function of the bonding angle between two
nearby monomers. Let’s make some assumptions to simplify our problem which leads to the freely
jointed model. (We might over simplify the problem but let’s just try it first to get a feeling about
what kind of problem we are facing. Then we can ask how to put back more ingredients to make
our analysis more realistic.)

• We assume the joint of the monomers can rotate freely, i.e. the potential energy is independent
of the bonding angle, ϕ, between two nearby monomers.

• We assume the monomers can overlap with each other in space and have no interaction
between each other.

The model with above two assumptions is the freely jointed chain model. It is the idealization of
polymers analogous to ideal gas model for gases.

Figure 1: Schematic picture of a single chain polymer molecular formed by the monomers repre-
sented by the grey oval.

A key property that we are interested in is the size of the polymer. Usually the polymer coils
up. The way they coils up will be a competition between the entropy and the energetics. Therefore,
the size of the polymer is not simply the number of monomers, N , times the size of the monomer, a.
Instead, we need to use some statistical description to characterize the size of the polymer. Usually,
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we use the root-mean-square end-to-end distance, ⟨r2⟩1/2, as a measure for the size of the polymer.
Here, r is the distance from one end of the polymer to the other in three-dimensional space. The
average is taken over all possible ways the polymer coils. One of the configuration is simple, if all
the monomers are aligned in one direction, the end-to-end distance rstraight = Na. However, this
is just one of the possible value of r, once the polymer coils, ⟨r2⟩1/2 < Na.

1. It is interesting to observe that the freely jointed model in one-dimension is actually the
simple one-dimensional random walk we discussed during the lecture. The step size is just
the size of the monomer. The one-dimensional constraint restricts ϕ = 0/π. Let’s start in this
simple limit and use x to represent the end-to-end distance in one-dimensional case. Derive
the probability distribution P1D(x,N) when the number of monomers N is large.

2. For the three-dimensional case, we assume the orientation is completely random and the vector
from monomer i and the vector for monomer i + 1 are uncorrelated. i.e. ⟨di · dj⟩i ̸=j = 0.
Therefore, we expect N to be distributed evenly Nx = Ny = Nz = N

3 . Here, Nx is a rough
definition of the monomer belongs to the monomer in x direction. We can simply consider the
projection of the monomer to the x, y, z direction. If the projection to x direction is has the
largest size, we said it is a x monomer that should be counted in Nx. Derive ⟨r2⟩

1
2 and express

it using N and a. This is a simple estimation for the size of the polymer. (Sometimes you will
see people use the radius of gyration r2g to estimate the size of the polymer. rg is the average
distance between monomers and the center of mass. It turns out the length scale, ⟨r2g⟩, will
be proportional with ⟨r2⟩. We will not discuss the calculation here, but just mention the fact
that using the root mean square of the end-to-end distance capture the essential information
for the size of the polymer.)

3. Now we have a rough idea about the freely jointed model. Let’s assume we are in three-
dimensional world. In the last problem, we should be able to have the probability distribution
function P3D(r,N). Using the microcanonical ensemble, we should expect the probability
distribution to related to the phase space volume as

P3D(r,N) =
Ω(r,N)∫
drΩ(r,N)

≡ Ω(r,N)

AN
. (1)

Here, Ω(r,N) is the phase space volume for the size N polymer with the end-to-end distance
r. AN is the integral of Ω(r,N) over r. Use (1) to find the expression of the entropy, S(r,N),
for the size N polymer with the end-to-end distance r using N, a, r, kB and AN .

4. With the expression of entropy, we can derive the Helmholtz free energy of the system using
F (r,N) = U(r,N) − TS(r,N). Here, we are considering the freely jointed model, so there
is no internal energy. The Helmholtz free energy is just F (r,N) = −TS(r,N). Here is
the interesting part, the free energy depends on r just like the spring with elastic energy
(E ∝ k(δx)2). We can have the elasticity constant of the polymer. Find the expression of the
elasticity constant k for the polymer described by the freely jointed model.

5. A rubber is an composite object with entangled polymers. They are difficult to anlayze during
the qualify exam. However, from the simple calculation we achieved here we can explain some
interesting physics. Consider a piece of rubber hanging a massive object below it. Suppose
the rubber is strong enough such that the massive object just hang in the air. Next, if we
heat up the rubber (hopefully we did not melt it.), what would you expect? Will the massive
object be lifted higher? Or the other way around?
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weight

heat up

Figure 2: Schematic plot for the massive object hanging in the air.

6. Till now, we assume the non-interacting limit. So the free energy only consider the entropic
effect. Now, we would like to extend the understanding to the case that the monomers can
actually interact with each other. In order to proceed, we make the following assumptions:

• In Fig. 1, we can clearly see the monomer is a rod like object which does not have rota-
tional symmetry (it is not a sphere). However, let’s put that aside and assume the
monomers are spherically symmetric objects with volume v that forbidden
the overlap of two monomers.

• We can define the packing ratio, µ, of the monomers for the polymer as

µ =
Nv

r3
. (2)

We drop the irrelevant coefficients just to get an estimation about the physics. It is the
ratio of the total volume of the monomers and the volume given by the ”size” of the
polymer.

Since the interaction avoids two monomers to overlap in space. We can assume that the
interaction between the monomers are pair-wise interaction. (They are just one monomer
interacts with another one to satisfy the no-overlapping condition.) Estimate the interaction
energy, Uint(r,N, T ), at temperature T for a polymer with length N at large N . (Hint: Think
about the meaning of the packing ratio. How to estimate the pair-wise interactions using the
packing ratio?)

7. Before we do any calculation, let’s think about the effect of each term. The entropic contri-
bution favors the value of small r to minimize the improved free energy. On the other hand,
since the monomers repel each other due to the interaction energy, the Uint(r,N, T ) term
prefers the value of large r in order to minimize the Fimproved(r,N, T ). Therefore, the two ef-
fects competes with each other and fix the characteristic size of the polymer with length scale
r∗. Use the above result to improve the free energy estimation by including the interaction
between the monomers. We should have Fimproved(r,N, T ) = Uint(r,N, T )+Fentropic(r,N, T ).
Find r∗ as a function of v, a,N .

8. rideal ∼ N
1
2 , r∗ ∼ Nα. Compare rideal and r∗ at large N limit. Is α > 1

2 , α < 1
2 or α = 1

2?
Why is it a reasonable result?
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Problem 2. A simplified model of hemoglobin(10 points): Hemoglobin is a protein in the blood
that carries oxygen from the lungs to the muscles. It is formed by four units. Each unit can carry
an O2 molecule or not. For a hemoglobin, there will be 24 configurations as shown in Fig.3. (Each
unit has two choices, carries nothing or an O2 molecule. Therefore we have 24 possible choices.)
As described in the caption of Fig.3, we can model the hemoglobin by assigning the binding energy
−ε0 and the additional gain, −J , if two nearby unit both bind with O2(We try to pack O2 to our
hemoglobin as much as possible, a simple minded physicist guess). For example, considering the

Figure 3: Schematic model of hemoglobin. The gray circles represent the unit that can carry an
O2 molecule. We assume the four units form a tetrahedral network structure. We can approximate
the hemoglobin using a simplified model: The energy gain for an O2 to bind with a unit is −ε0. If
two nearby units both contain O2, the energy can further reduced by energy −J .

configuration in Fig. 4, the total energy of the simplified model is (−ε0)× 2 + (−J)× 1. Consider

Figure 4: One particular configuration of hemoglobin. The red circles represent the units that are
occupied by O2 molecules. The thick line represent the additional energy reduction, −J , for nearby
units are occupied by O2 molecules. There will be other 5 configurations with equal energy.

we have N/4 hemoglobin, labeled by α = 1 ∼ N
4 . On each hemoglobin, we have 4 units which can

bind with O2 molecules. We can use τα,i = 0, 1 for i = 1 ∼ 4 to denote whether the i-th unit on
the α-th hemoglobin is occupied by an O2 molecule or not.

1. Write down the expression of the grand canonical partition function of the system with
N
4 hemoglobin. Express the result using x = exp

[
ε0+µ
kBT

]
and y = exp

[
J

kBT

]
. (Hint: we

consider the molecules of hemoglobin to be independent. So, we can factorize the partition
function of the system into products of partition functions of individual hemoglobin molecule.
Then, within each Hemoglobin, we can enumerate all the possible configurations and the
corresponding energy to construct our partition function. Be careful about the number of
configurations with equal energy. The degeneracy of energy in this system is not very regular,
so one needs to specify them explicitly.)

2. Evaluate the average number ⟨M⟩ =
∑N/4

α=1

∑4
i=1⟨τα,i⟩ of adsorbed molecules as a function of

x, y.
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Problem 3. Free fermion problem(10 points): Let the density of states of the electrons in a
system be assumed to be a constant D for ε > 0 (D = 0 for ε < 0). Here, ε represents the energy.
We assume the total number of electrons be equal to N . Here N = D

∫∞
0

1
eβ(ε−µ)+1

dε.

1. Calculate the chemical potential µ at T = 0K.

2. When the system is in the regime of quantum degeneracy, estimate or derive the expression
of the specific heat and show that it is proportional to T .

Problem 4. Two-level system(10 points): Consider a system of N distinguishable particles,
which have two energy levels, E0 = −µB and E1 = µB, for each particles. Here µ is the magnetic
moment and B is the magnetic field. The particles populate the energy levels according to the
classical distribution law.

1. Calculate the average energy of such system at temperature T

2. Calculate the specific heat of the system

Problem 6. Bosons in Harmonic traps(30 points): Let us consider a particle in the anisotropic
harmonic-oscillator potential V (r) = 1

2

(
Kxx

2 +Kyy
2 +Kzz

2
)
. Therefore, we can consider the

system as three independent harmonic oscillators in three different directions x, y and z. The
corresponding energy levels can be parameterized by three non negative integers (nx, ny, nz) as

E(nx, ny, nz) =

(
nx +

1

2

)
ℏωx +

(
ny +

1

2

)
ℏωy +

(
nz +

1

2

)
ℏωz. (3)

1. Let us consider ni are continuous variables and neglect the zero-point energies (The 1
2ℏωi in

E(nx, ny, nz).), we can simplify the energy as E ≈ εx+ εy + εz where εi = niℏωi. If we define
G(E) as the number of states below energy a specific energy E. Derive the expression of
G(E) in terms of E, ωx, ωy, ωz and ℏ. (Hint: There are several way to derive this result. One
approach is to consider the problem in the (nx, ny, nz) space. What is the geometric meaning
of the states below energy E?)

2. Another way to understand density of state is g(E) = dG(E)
dE . Use the above expression to get

the density of states.

3. We can evaluate the particles in the excited states using

Nex =

∫ ∞

0
dEg(E)

1

eE/kBT − 1
. (4)

Here, we assume Nex reaches its maximum for µ = 0. The definition of the transition
temperature, Tc, of Bose-Einstein condensation is when the total number of particles can be
just accommodated in excited states. That is,

N = Nex(T = Tc, µ = 0) =

∫ ∞

0
dEg(E)

1

eE/kBT − 1
. (5)

∫∞
0 dxxα−1

ex−1 = Γ(α)ζ(α). Here, ζ(α) =
∑∞

n=1 n
−α is the Riemann zeta function and Γ(α) is

the gamma function. Derive the transition temperature of this system and express the result
using N,ωx, ωy, ωz and the Riemann zeta function.
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