
Electrodynamics Qualifying Exams

February 2023

You must provide the details or reasonings to justify your answers.

Problem 1: Simple Questions (5% each = 35% total)

1. Write down the four Maxwell’s equations. Specify all the numerical values of the
relevant physical constants and the units you adopt.

2. Why are electromagnetic waves transverse in the vacuum?

3. In one particular inertial frame, the electric and magnetic fields are measured as
E⃗ = (9,−1, 7) and cB⃗ = (5, 0,−2) in some units, respectively. In a different frame,

E⃗ = (2, 0, 4). Give one possible cB⃗′.

4. Explain the terms Lorentz gauge and Coulomb gauge.

5. Explain the term Green’s function.

6. Explain the terms Dirichlet and Neumann boundary conditions.

7. How many real degrees of freedom does the quadrupole tensor have? Explain your
answer.

Problem 2: Simple derivations (10% each = 20% total)

1. Derive the conservation of charge from the Maxwell equations.

2. Derive the wave equation for electromagnetic fields from the Maxwell equations.

Problem 3: Moving charge (15%)

What are a point charge’s electric and magnetic fields at a constant velocity v⃗ ?

Problem 4: Image Charges (18%)

Consider the volume V = {r⃗ : 0 ≤ x ≤ ∞, 0 ≤ y ≤ ∞,−∞ ≤ z ≤ ∞} which is limited
by grounded metal plates. On the surface of the metal plates (at x = 0 and y = 0) and at
infinity the potential vanishes. In the volume there is a point charge q at r⃗0.



1. (5%) Find the electric potential ϕ(r⃗) in V and check that it fulfills the boundary
conditions.

2. (8%) Calculate the surface charge density

σ = −ϵ0 n̂ · ∇⃗ϕ , (1)

with n̂ the normal vector on the surface S.

3. (5%) Calculate the total charge

Q =

∫
σ dS (2)

on the plates. You can use Gauss’ theorem to calculate Q.

Problem 6: Multipole Moments (12%)

Consider two homogeneously charged, solid hemispheres with radius R which are separated
in the x-y-plane by a negligible slit. The upper hemisphere shall have total charge +Q and
the lower hemisphere shall have total charge −Q.

1. (3%) Write down an expression for the charge density, ϱ, of the two hemispheres.

2. (4%) Calculate either the spherical or the Cartesian monopole moment.

3. (5%) Calculate either the spherical or the Cartesian dipole moment.



Quantum Mechanics Spring 2023
Qualifying Exam

You must show your work. No credits will be given if you don’t
show how you get your answers.
Boldface characters like v refer to vectors (= ~v).

You may use the following formula:

• The Schrödinger equation:

ih̄
d |ψ(t)〉
dt

= Ĥ |ψ(t)〉

where Ĥ is the Hamiltonian
p̂2

2µ
+ V (r̂) and µ is the mass of the particle.

For energy eigenstates, this reduces to the time-independent Schrödinger
equation (in spherical coordinates)
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L̂ is the orbital angular momentum operator, L̂ = r̂× p̂.

• For a 1-D simple harmonic oscillator (SHO), Ĥ =
p̂x
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The raising and lowering operators are

â† =

√
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√
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and [â, â†] = 1. The operators get their names from the facts that

â† |n〉 =
√
n+ 1 |n+ 1〉 , â |n〉 =

√
n |n− 1〉 ,

where |n〉’s are the energy eigenstates of the 1D SHO.

• The Pauli matrices:

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
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• Time-independent Perturbation: Consider Ĥ = Ĥ0 + Ĥ1, where Ĥ1 is
a small perturbation. The first order energy correction to the n-th energy
eigenvalue of Ĥ0 is

E(1)
n =

〈
n(0)

∣∣∣Ĥ1

∣∣∣n(0)〉
where

∣∣n(0)〉 is the n-th eigenstate of Ĥ0.

The second order energy correction is

E(2)
n =

∑
m 6=n

|
〈
n(0)

∣∣ Ĥ1

∣∣m(0)
〉
|2

En0 − Em0
.

• Time-dependent Perturbation: Consider Ĥ = Ĥ0 + Ĥ1(t), where Ĥ1(t)
is a small perturbation. The state |ψ(t)〉 can be expanded in terms of the
unperturbed eigenstates

∣∣n(0)〉:
|ψ(t)〉 =

∑
n=0

dn(t)e−i
E
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n t
h̄

∣∣∣n(0)〉 .
If initially (t = 0) the particle is at state

∣∣i(0)〉, the transition amplitude for
the particle to be in state

∣∣f (0)〉 at time t is

df (t) = δfi −
i
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• 3-D Scattering: The wave function ψ(r) of a particle scattering off a po-
tential V (r) has the asymptotic behavior

ψ(r) = Aeikz +Af(θ, φ)
eikr

r
, r →∞,

where the incident wave is in the z-direction.

• Born Approximation: Useful for high-energy scattering.

f(θ, φ) = − m

2πh̄2

∫
d3r′V (r′)e−iq·r

′
,

where m is the mass of the scattering particle, and h̄q = h̄kf − h̄ki is the
momentum transferred from the initial state eiki·r to the final state eikf ·r.

• Partial wave expansion: Useful for low-energy scattering. For spherically-
symmetric V (r),

f(θ) =

∞∑
l=0

(2l + 1)
eiδl

k
sin δl Pl(cos θ),
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where δl is the phase shift of the l-th partial wave, and Pl(cos θ) is the
Legendre polynomial, which relates to the spherical harmonics Yl,m(θ, φ) as

Yl,0(θ, φ) =

√
2l + 1

4π
Pl(cos θ).

• Useful Gaussian integrals:∫ ∞
−∞

exp
(
−ax2 + bx

)
dx = exp

(
b2

4a

)√
π

a
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1. Consider a massive charged spin-1/2 particle placed under an external
magnetic field, B = B0n̂, where n̂ is a unit vector n̂ = (sin θ cosφ, sin θ sinφ, cos θ).
(5 points each)

(a) Explain why the Hamiltonian of the system is of the form Ĥ =
ω0Ŝ·n̂, where Ŝ is the spin operator and ω0 has the unit of angular
frequency.

(b) At t = 0, the particle is in the state of spin-up along the z-axis,
|ψ(0)〉 = |+z〉. Write down the expectation value of energy 〈E〉
of the particle as a function of time.

(c) If n points along the positive x-axis, find out the probability of
the particle in the state |+z〉 as a function of time.

2. Consider a particle with charge q, mass m, and placed under a 1D
simple harmonic oscillator (SHO) potential. (5 points each)

(a) Prove that the wave function ψ0(x) of the ground state |0〉 (i.e.
ψ0(x) = 〈x|0〉) of the system is a Gaussian function.

(b) Prove that ψn(x) = 〈x|n〉 is an even/odd function if n is even/odd.
[Hint: Show that the parity of |n〉 is (−1)n.]

(c) Now we turn on a constant electric field E = E0î. Write down
the resulting Hamiltonian.

(d) Treat the electric field as a perturbation, find out the first and
second order energy corrections to the n-th energy eigenvalue of
the unperturbed SHO.

(e) Explicitly solve for the energy eigenvalues of the full Hamiltonian,
and prove that all higher order (beyond the second order) energy
corrections vanish.

(f) Suppose the electric field decays in time as E = E0 exp

(
− t
τ

)
î.

At t = 0 the system is in the ground state. Find the transition
probability to |n〉 (for all n > 0) as t→∞.

3. Consider a particle with mass µ confined in a 3D infinite potential well,
V (r) = 0 for |r| < a, ∞ or |r| > a.

(a) Explain why the energy eigenstates are of the form ψE(r, θ, φ) =
Rn,l(r)Yl,m(θ, φ), where n, l,m are quantum numbers associated
with energy, total angular momentum, and angular momentum
along the z-axis. (5 points)

(b) Write down the Schrödinger equation for an energy eigenstate
ψE(r, θ, φ) for the case l = 0, along with proper boundary condi-
tions. (5 points)
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(c) Rewrite the radial equation in terms of U(r) = rR(r) for the case
l = 0 , and solve for the corresponding energy eigenvalues. (10
points)

4. 3D Scattering: Consider a particle of mass m moving in 3D.

(a) Let ψ(r, t) be the wave function associated with the particle.

Prove that the probability current density j is
h̄

2mi
(ψ∗∇ψ−ψ∇ψ∗)

by taking the time derivative of the probability density. What is
the unit of j? (5 points)

(b) The particle is scattering off a potential V (r). Prove that the

differential cross section
dσ

dΩ
is related to the scattering amplitude

f(θ, φ) as
dσ

dΩ
= |f(θ, φ)|2

if the particle approaches the potential along the positive z-direction.
(5 points)

(c) If the potential is of the form V (r) = V0 exp
(
−r2/R2

)
(R is a

constant), explain why f(θ, φ) depends only on θ. (5 points)

(d) Use the Born approximation, calculate the the scattering ampli-
tude f(θ) for the potential V (r) = V0 exp

(
−r2/R2

)
. (10 points)

[Note: You should express your answer in terms of k(= |ki|) and
θ.]

(e) Derive the s-wave scattering length in the limit of zero energy for
the potential V (r) = V0 exp

(
−r2/R2

)
.(10 points)
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Qualification Exam. Problem Set  
Classical Mechanics 

Spring, 2023 
 

 
1. A point mass is constrained to move on a massless hoop of radius 𝑎𝑎 fixed in a 

vertical plane that rotated about its vertical symmetry axis with constant angular 
speed 𝜔𝜔.   
(a)、 (5 points) Obtain the Lagrange equations of motion assuming the only 

external forces arise from gravity and find the constants of motion. 
(b)、 (10 points) Show that  if 𝜔𝜔 is greater than a critical value 𝜔𝜔0, there can 

be a solution in which the particle remains stationary on the hoop at a point 
other than at the bottom, but if 𝜔𝜔 < 𝜔𝜔0 , the only stationary point for the 
particle is at the bottom. 

(c)、 (10 points) Find the critical value 𝜔𝜔0, and the corresponding stationary point. 
 

2. A soap film is built between two circular wires of radius 𝑅𝑅 that are 
separated by a distance 𝐿𝐿. Air is allowed to flow through the wires. 
Please  
(a)、 (10 points) find the shape of film. 
(b)、 (10 points) show that there exists a upper bound for 𝐿𝐿 beyond 

which the film becomes unstable. 
 
3. (20 points)Derive Kepler’s third law: 𝜏𝜏2 ∝ 𝑎𝑎3  where 𝜏𝜏 is the period and 𝑎𝑎 the 

semi-major axis (長軸半長)  by the following steps: 
(a)、 draw an elliptic orbit with semi-major and minor axes 𝑎𝑎, 𝑏𝑏 and put the sun 

on one of its focus (焦點),  
(b)、 denote the speed of planet at perihelion (近日點) and aphelion (遠日點) by 

𝑣𝑣𝑝𝑝 and 𝑣𝑣𝑎𝑎,  
(c)、  write down the conservations of angular momentum ℓ and mechanical 

energy at perihelion and aphelion,  
(d)、 given that the area of ellipse equals 𝑎𝑎𝑎𝑎𝑎𝑎, relate 𝜏𝜏 to ℓ.  
 

4. (15 points) Solve the problem of the motion of a point projectile in a vertical plane, 
using the Hamilton-Jacobi method.  Find both the equation of the trajectory and 
the dependence of the coordinates on time, assuming the projectile is fired off at 
time 𝑡𝑡 = 0  from the origin with the velocity 𝑣𝑣0 , making an angle 𝛼𝛼  with the 
horizontal. 

 



5. For a one-dimensional system with the Hamiltonian 

𝐻𝐻 =
𝑝𝑝2

2
−

1
2𝑞𝑞2

 

(a)、 (10 points)Show that there is a constant of the motion 

𝐷𝐷 =
𝑝𝑝𝑝𝑝
2
− 𝐻𝐻𝐻𝐻 

(b)、 (10 points)As a generalization of part (a), for motion in a plane with the 
Hamiltonian 

𝐻𝐻 = |𝒑𝒑|𝑛𝑛 − 𝑎𝑎𝑟𝑟𝑛𝑛 
where 𝒑𝒑  is the vector of the momenta conjugate to the Cartesian coordinates, 
show that there is a constant of the motion 

𝐷𝐷 =
𝒑𝒑 ∙ 𝒓𝒓
𝑛𝑛

− 𝐻𝐻𝐻𝐻. 

 



Qualifying Examination – Statistical Mechanics

Feb 18-19, 2023

Please explain the logic behind your answers.

Problem 1. Fermions in a two-level system (15 points): Consider a system of N independent
fermions. Assume that the single-particle Hamiltonian have only two energy levels, with energy 0
and ϵ. However, the two levels have degeneracies n0 and n1, which are both integers.

1. For the case of n0 = n1 = 3 with N = 3. Find the chemical potential µ, as a function of
temperature. What is the Fermi energy ϵF = µ(T = 0)?

2. For the case of arbitrary value of n0 and n1, but with N = n0. Find the chemical potential
µ, as a function of temperature at the low temperature limit. What is the Fermi energy
ϵF = µ(T = 0)?

Problem 2. Spins and vacancies on a surface and the negative temperature (20 points): Consider
a surface with N sites and a collection of non-interacting spin 1

2 particles. For each site the energy
ε = 0 if there is a vacancy and ε = −W if there is a particle present, where −W < 0 is the binding
energy.

1. Let N± be the number of particle with spin ±1
2 , Q = N+ + N− be the number of spins,

N0 be the number of vacancies, M = N+ − N− be the surface magnetization. We have
N++N−+N0 = N = Q+N0. In the microcanonical ensemble, compute the entropy S(Q,M).
Hint: Calculate the number of states available to the system and express N+, N−, N0 with Q
and M .

2. Let q = Q
N be the dimensionless particle density and m = M

N be the dimensionless magne-
tization density. Assuming that we are at the thermodynamic limit where N,Q and M all
tend to infinity, but with q and m finite. Find the temperature T (q,m). Hint: Use Stirling’s
formula lnN ! ≈ N lnN −N .

3. Show explicitly that T can be negative for this system. What does negative T mean? What
physical degrees of freedom have been left out that would avoid this strange property?

Problem 3. Universality beyond the ideal gas model (25 points): The ideal gas model gives the
state equation P V

N = kBT . However, the model is pretty artificial that it consider particles as
mathematical points. The Van der Waals equation take into the account that

• The particles are not mathematical points, but with some intrinsic volume. This leads to

P

(
V

N
− b

)
= kBT . (1)
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• The particles will collide and put pressure on the container. However, the particles will
interact(electric dipole, magnetic dipole, . . . ) with each other and modify the expression of
pressure. This leads to

(P −Q)

(
V

N
− b

)
= kBT . (2)

Figure 1: The toy model for interaction in the Van der Waals model. The dashed lines represent
the interaction between the reference particle and its neighbors. (a) represents the case where the
reference particle is deep inside the container and cannot see the boundary of the container. (b)
represents the case where the reference particle is near the boundary of the container.

Let’s try to use a simple averaged picture to estimate Q. The interaction between the particles
are complicated. They could depends on the distance between particles as in Fig. 1(a). Let’s
assume the potential, U , describes the interaction between a particle deep inside the container and
the rest of the particles near it. And UW to be the potential when the reference particle is near the
wall of the container. From Fig. 1(b), we estimate UW = U

2 .

1. The density deep inside the container is N
V , we expect the density near the wall of the container

to be modified. A rough estimation is

N

V

∣∣∣∣
Wall

=
N

V
F(UW − U)︸ ︷︷ ︸

modification by wall

?−→ N

V
exp

[
− 1

kBT
(UW − U)

]
=

N

V
exp

[
U

2kBT

]
(3)

What is the physical argument to go from the left hand side of
?−→ to the right hand side of

it?

Hint: Here U should be proportional with the density of the system, so we can write U = N
V u0

where u0 =
∫
B(0) d

3ru(r). Here we use B(0) to denote the integral region near the reference

particle and u(r) is the two particle potential with r denote the distance to the reference
particle. Therefore, we have

N

V

∣∣∣∣
Wall

=
N

V
exp

[
Nu0

2V kBT

]
. (4)

When u0 > 0(u0 < 0), we have a repulsive(attractive) potential between particles. The density
near the wall will be larger(smaller) comparing with the density in the bulk. Using this picture,
it is clear why we have the last equality. Since near the boundary, UW should only include
half of its neighbors, so we have UW = U/2.
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2. Interaction correction to the pressure: Assume we can apply the ideal gas equation near the
wall of the container

P = kBT

(
N

V

∣∣∣∣
Wall

)
. (5)

Assume we are still at the dilute gas limit. Find the expression of P to leading order correction
in bN/V ≡ bv−1 beyond the ideal gas equation by expanding the exponent. With this
correction, we can modify the ideal gas model and derive the Van der Waals equation as(

P +
a

v2

)
(v − b) = kBT . (6)

Derive the expression of a using u0.

3. Expand the Van der Waals equation, one will get a cubic equation FV dW (v) = 0. The cubic
equation has different possibilities of its solution:

(a) three real roots of v.

(b) one real root of v and a pair of complex root of v.

(c) three degenerate real root v = vc. This corresponds to the critical point of the system.

Here, we only focus on the last case which corresponds to the case we have FV dW (v) ∝ (v−vc)
3.

Assuming the corresponding temperature and pressure in this case to be denoted as Tc and Pc.
Find the expression of Tc, Pc and vc using the parameter a, b in the Van der Waals equation.

4. Show that Pcvc
kBTc

is a constant independent of the microscopic detail parameters a, b. The
meaning of this expression is: for different systems, we will need different microscopic param-
eter a to describe how they interact and b to describe the correction due to the size of the
particles. In general, a, b differs from system to system. However, at the critical point, they
all satisfy this relation that the value of the product Pcvc

kBTc
is the same constant.

Problem 4. Ising model(15 points): Considering the Ising model H = −J
∑
⟨i,j⟩ σiσj where σi =

±1 and ⟨i, j⟩ denotes the nearest-neighbor pairs of sites.

1. For a system of coordinate number z, use mean-field approximation to find the critical tem-
perature Tc below which spontaneous magnetization exists.

2. Show that the magnetic susceptibility χ ∝ (T − Tc)
−1 at T ≫ Tc

3. Use entropy argument to show that in 1D there is no phase transition, i.e., Tc = 0.

Problem 5. Free bosons (15 points): Consider a number conserved Bose gas with energy disper-
sion εp = C|p|α in d dimension space:

1. Show that there will be a Bose-Einstein condensation if d > α.

2. Show that the critical temperature scales with the total number of particles, N , as Tc ∝ Nα/d.
Hint: you do not need to do the full calculation and may use dimensional argument for the
density of states first.
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Problem 6. Random walk(10 points): A drunkard is kicked out of the pub. Being fully intoxi-
cated, he walks forward and backward with equal probability. According to the senior high school

math, the probability of finding him at position n after N step is P (n,N) = CN
N→

(
1
2

)N→ (
1
2

)N←
where N→ and N← represent the number of steps forward and backward, respectively. By defini-
tion, we have N = N→+N← and n = N→−N←. Assume N ≫ n ≫ 1 so that the Stirling formula
can be used to approximate all large factorials: lim

N≫1
N ! ≈ N lnN −N . Show that P (n,N) can be

reduced to the Gaussian distribution : P (n,N) ∼ 1√
N
exp

[
− n2

4N

]
.
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