跳到主要內容區

潘犀靈 教授

ImgDesc
ImgDesc

潘犀靈 教授 (108.08 退休)
Pan, Ci-Ling

辦公室電話:03-5742275 (物理館231室)
研究室電話:03-5162576 (物理館218室)
實驗室電話:03-5742552 (物理館219室)
傳真:03-5162576
E-mail:clpan@phys.nthu.edu.tw
實驗室網站:
http://w3.phys.nthu.edu.tw/~clpanlab/


 

學歷

  • Ph.D. in Physics, Colorado State University, Ft. Collins, Colorado, U.S.A. (1975-1979)
  • M.S. in Physics, Colorado State University, Ft. Collins, Colorado, U.S.A. (1973-1975) 
  • 東海大學物理系學士 (1967-1971 )

 

現職與經歷

現職:

  • 國立清華大學物理系榮譽退休教授 (2019/07-)
  • 國立清華大學理學院榮譽終身講座 (2019/07-)

經歷:

  • 國立清華大學研發長 (2014/2 to 2016/7)
  • 國立清華大學產學合作營運總中心主任 (2014/2 to 2016/7)
  • 國立清華大學光電研究中心主任 (2009/8 to 2014/7)
  • 國立清華大學物理系主任 (8/2011 to 1/2014)
  • 國立清華大學物理系教授 (2/2009 to 7/2019)
  • 國立交通大學講座教授 (11/2003 to 1/2009) 
  • 國立交通大學光電工程學系系主任 (8/2004 to 7/2006) 
  • 國立交通大學光電工程研究所教授 (8/1987 to 1/2009) 
  • 國立交通大學光電工程研究所所長 (8/1992 to 7/1995) 
  • 國立交通大學光電工程研究所副教授 (2/1981 to 7/1987) 
  • 國科會光電學門召集人 (1/1996 to 12/1999) 
  • 香港中文大學電子工程學系訪問教授 (1/2008 to 6/2008) 
  • 日本大阪大學雷射工學研究所客員教授 (3/2004 to 6/2004) 
  • 美國加州大學柏克萊分校訪問學者 (2/1986 to 1/1987) 
  • 美國科羅拉多州立大學化學系博士後研究員 (8/1979 to 1/1981) 
  • 中華民國海軍陸戰隊少尉兵工官 (7/1971 to 6/1973)

 

榮譽與獎項

學術獎

  • 國科會傑出研究獎(1990-1992,1992-1994,1994-1996)
  • 國科會特約研究員(1997-2002)
  • 國科會傑出特約研究員獎(2002)
  • 教育部第48屆學術獎(2004)

其他榮譽 

  • 斐陶斐榮譽學會會員 (1991迄今)
  • 華人光電學會(Photonic Society of Chinese Americans, PSC) Fellow (1998)   

​Fellow citation: “For his outstanding contribution in ultrafast optics and optoelectronics, in particular the development of dual wavelength lasers and GaAs:As+ photoconductors”.

  • 有庠科技講座(通訊光電)(2003)
  • 美國光學學會(OSA, the Optical Society)Fellow (2004)   

Fellow Citation: “For contributions to ultrafast optoelectronics, tunable and multi-wavelength lasers, leadership of optical and photonics research and education”.

  • 國際光學工程學會(International Society for Optical Engineering, SPIE)Fellow (2004)   

​Fellow Citation: “For contributions to ultrafast optoelectronics, tunable and multi-wavelength lasers, leadership of optical and photonics research and education”.

  • 中華民國光學工程學會工程獎章 (2004)
  • 中華民國物理學會會士 (2005)   Fellow Citation: “超快雷射與兆赫波物理及工藝上,貢獻卓越”
  • 中國工程師學會傑出工程教授獎 (2006)
  • 潘文淵文教基金會研究傑出獎 (2007) 
  • 領導學術追求卓越團隊及研究成果入選「科學50」– 國科會50科學成就 (2008)
  • OSA Traveling Lecturer (2008 迄今)
  • 台聯大系統講座 (2009-2011)
  • 美國物理學會(APS, American Physical Society) Fellow (2009)   

Fellow Citation: “For pioneering studies of the physics and technology of ion-planted semiconductor and liquid-crystal devices for ultrafast and THz applications, and for significant contributions toward developing tunable and ultrafast laser systems for applications in communications, sensing, spectroscopy and materials diagnostics and processing”.

  • Fellow, IEEE (2012) 

Fellow Citation: "For pioneering contributions in optoelectronic and liquid crystal devices for ultrafast and THz photonics".

  • 東元科技文教基金會第十九屆東元獎 (2012) 
  • 傑出人才發展基金會101學年度第一期傑出人才講座 (2012)
  • 東海大學傑出校友 (2013)
  • 亞太材料學院院士 (2013)
  • Distinguished Lecturer, IEEE EDS (2016 迄今)
  • 俄羅斯國際工程院通訊院士 (2017)
  • 侯金堆傑出榮譽獎(基礎科學-數理) (2017)
  • 中華民國斐陶斐榮譽學會傑出成就獎 (2018)
  • Life Fellow, IEEE (2019)

 

研究領域

  1. Laser Science (雷射科學)
  2. Ultrafast Optics and Optoelectronics (超快光學與光電子學)
  3. THz Optics and Photonics (兆赫光學與光子學)
  4. Liquid Crystal Optics and Photonics (液晶光學與光子學)

 

研究興趣與成果   (Updated on March 24, 2021)

[ 1 ] Multi-color Light-Matter Interaction II (MOST, Aug. 1, 2020 - July 31, 2021)
This project is a continuation of our 2019-2020 project. In short, we propose to study light-matter interaction with two types of novel laser sources, i.e., phase-controlled multi-color femtosecond synthesized waveforms and noise-like laser pulses. There are two focuses of the present study: Material Processing and THz Science and Technology. Types of material processing to be investigated include activation of source/drain dopants for silicon technology beyond CMOS, recrystallization of amorphous thin film for display and solar cell applications, fabrication of hyperdoped silicon and transparent electrodes for photovoltaic, imaging and IR optoelectronic applications. The mechanisms for processing by these novel sources is expected to be different from conventional approaches and would allow us to shed more light on the fundamental problem of laser-material interaction. In particular, the effect of relative phases among coherently controlled multi-color beams on light Vmatter interaction has not been explored extensively. The other focus of the present project is multi-color excitation of broadband THz radiation in air plasma and dielectric media. Our preliminary theoretical studies show that enhancement in efficiency by several orders of magnitude would be possible with optimum relative phases of the three-color excitation pulse over the two-color case. On the other hand, noise-like pulses may enable generation of THz white light continuum.? Such THz sources would be attractive sources for diagnostics and analysis of advanced material prepared in this project and elsewhere.

[ 2 ] Novel non-absorbing facet in high power laser diodes II (Science Park R&D Endeavor Project with Turning Point Lasers Corporation, May 1, 2020 - April 30, 2021)

High-power laser diodes (LDs) ?are key components for the high-tech industry and advanced manufacturing. For example, LDs with center wavelengths of 915 nm or 976 nm are used to pump Yb-doped fiber lasers, which are now widely employed for material modification and machining. The conversion efficiency of the Yb-fiber lasers pumped at 976 nm is much higher than those pumped at 915 nm. However, the requirement on wavelength accuracy and stability is quite stringent at 976 nm.? If the output power of LDs can be scaled up, these can be directly used for various applications. In this project, we will employ Quantum-well-intermixing (QWI) technology to develop non-absorbing mirror (NAM) for high-power laser diodes (LDs, l= 76nm). Such LDs will be integrated into a module containing Volume Bragg Grating (VBG) for wavelength stabilization.? Still higher power will be generated by exploring WBC (Wavelength Beam Combine) technology. WBC is also expected to enhance the beam quality of high-power LDs thus constructed.

?[ 5 ] Carrier Dynamics and Electrical Properties of LargE Bandgap Semiconductors investigated by Terahertz Spectroscopy (CELESTA, MoST-ANR Bilateral Research Project, year 4, Jan. 1, 2020 - Dec. 31, 2021)

In this Taiwan-France project, we aim at addressing carrier dynamics in large bandgap materials, like ITO (3.7~3.9 eV), TiO2 (3.2 eV), GaN (3.4 eV), etc. ITO and GaN are important for high-speed electronics or optoelectronics while TiO2 is important for application such as water catalysis for removing pollutants. In both cases, material nano-structuration (nanorods or nanowhiskers) is expected to yield exotic features. For example, the Taiwanese group shows that ITO nanostructures exhibit a significant increase in transmittance (from 9% to 70% up to 15 THz) compared to the bulk film while InN nanorods can enhance photo-excited THz emission. In the proposed joint work, new designs will be tested during this project to provide optimized ITO material and nanostructures. These samples will then be fully characterized. Their electrical conductivity will be investigated by THz-TDS. The dynamics of the carrier population will be studied by UV pump-THz probe time-resolved spectroscopy. For comparison, TiO2 nanofilms and GaN nanostructures will also be studied.

The Taiwanese groups will leverage their expertise in THz technologies, metamaterials, nanodevices and solar cells to design, fabricate and characterize the samples, e.g., using a very broadband THz-TDS system based on THz generation and detection in air. Complementary THz conductivity characterization (polarization, scattering K) will be performed in France, at the IMEP-LAHC Institute (Universite Savoie Mont-Blanc), in particular UV-THz pump-and-probe measurements. Ultimately, the French group will study electron injection in water from optically excited TiO2 in order to achieve a more comprehensive understanding of processes involved in water catalysis in solar-excited depollution systems.

The project can have a real impact on display and optoelectronics devices as well as high-speed electronics since large bandgap semiconductors are a key material in these applications. Moreover, the knowledge acquired during the project in the domain of UV-induced carrier injection of water makes it also relevant to applications in environmental improvement and water purification.

代表著作

Prof. Pan has published more than 270 refereed journal papers and 8 book chapters to date. He also holds 25 Taiwan patents and 17 US patents. A full list of his publications is available online at https://reurl.cc/WpXY7. or https://scholar.google.com/citations?hl=zh-TW&user=6S2zOIYAAAAJ

  1. F. Ganikhanov, G. -R. Lin, W. -C. Chen, C. -S. Chang, and Ci-Ling Pan*, “Subpicosecond carrier lifetimes in arsenic-ion-implanted GaAs,” Appl. Phys. Lett.  67:3465(1995) (Pioneering paper on GaAs:As+ as an ultrafast photoconductor). See also, Gong-Ru Lin, Wen-Chung Chen, Shyh-Chin Chao, C.-S. Chang, Kaung-Hsiung Wu, T. M. Hsu, W. C. Lee, and Ci-Ling Pan* “Material and Ultrafast Optoelectronic Properties of Highly Resistive Arsenic-ion-implanted GaAs,” IEEE J. Quantum Electron., 34:1740(1998).
  2. Array with an External Grating-loaded Cavity", Appl. phys. Lett. 64:3089(1994) (Generic laser cavity design for collinear, linearly polarized, tunable dual-wavelength output). See also, Ci-Ling Pan and Chi-Luen Wang, A novel tunable dual-wavelength external-cavity laser diode array and its applications, invited paperOptical and Quantum Electronics 28:1239(1996), U.S. Patent 5,524,012.
  3. T. R. Tsai, C. Y. Chen, C.-L. Pan*, R.-P. Pan and X.-C. Zhang, THz Time-Domain Spectroscopy Studies of the Optical Constants of the Nematic Liquid Crystal 5CB, Appl. Opt., 42:2372(2003) (Demonstrate feasibility of Liquid Crystal THz photonics). See also, Chan-Shan Yang, Chia-Jen Lin, Ru-Pin Pan*, Christopher Que, Kohji Yamamoto, Masahiko Tani, and Ci-Ling Pan*, The Complex Refractive Indices of the Liquid Crystal Mixture E7 in the THz Frequency Range, J. Opt. Soc. Am. B, 27:1866(2010).
  4. Ci-Ling Pan*, Jin-Yuen Zhang, Jung Y. Huang, and Chao-Kuei Lee, A blue-light generating Femtosecond wavelength-tunable Non-collinear Optical Parametric Amplifier, Taiwan patent I239128, US patent 7106498, 2006. (Femtosecond laser pulses that are tunable from 380 to 460 nm are directly generated the BBO OPA crystal,) see also Chao-Kuei Lee, et. al., Generation of Femtosecond Laser Pulses Tunable from 380 nm to 465 nm via Cascaded Nonlinear Optical Mixing in a Noncollinear Optical Parametric Amplifier with a Type-I Phase Matched BBO Crystal, Opt. Exp. 11:1702(2003)J. Opt. Soc. Am. B, 21: 1494(2004). .
  5. Chao-Yuan Chen, Cho-Fan Hsieh, Yea-Feng Lin, Ru-Pin Pan*, and Ci-Ling Pan*, Magnetically Tunable Room-Temperature 2P Liquid Crystal Terahertz Phase Shifter, Opt. Exp. 12:2625(2004) (The first room-temperature tunable 2p THz phase shifter). See also Chao-Yuan Chen, Tsong-Ru Tsai, Ci-Ling Pan, and Ru-Pin Pan, Room? Temperature Terahertz Phase Shifter Based on Magnetically Controlled Birefringence in Liquid Crystals, Appl. Phys. Lett. 83: 4497(2003). Multiple Taiwan and US patents
  6. Tze-An Liu, Masahiko Tani, and Makoto Nakajima, Ci-Ling Pan*, Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs, Appl. Phys. Lett. 83:1322(2003). (Broadest reported to date for antennas fabricated on ion-implanted materials) see also, Tze-An Liu, et al. Ultrabroadband terahertz field detection by photoconductive antennas based on proton-bombarded InP, Opt. Exp. 12:2954(2004).
  7. Yi-Chao Wang, Jia-Min Shieh, Hsiao-Wen Zan and Ci-Ling Pan* Near-infrared femtosecond laser crystallized poly-Si thin film transistors, Opt. Exp. 15(2007) 6981 (Demonstrated potential application of ultrafast athermal annealing for TFT applications); see also, Jia-Min Shieh, Zun/span>-Hao Chen, Bau-Tong Dai, Yi-Chao Wang, Alexei Zaitsev, and Ci-Ling Pan*, Near-Infrared Femtosecond Laser-induced Crystallization of Amorphous Silicon, Appl. Phys. Lett., 85(2004)1232, Taiwan patent I245321.
  8. W. VJ. Chen*, H. VZ. Wang, R. VY. Lin, C. VK. Lee, and C. VL. Pan,* Attosecond pulse synthesis and arbitrary waveform generation with cascaded harmonics of an injection-seeded high-power Q-switched Nd:YAG laser, Laser Phys. Lett. 9:212 (2012). (reported by SPIE Newsroom and ?as a feature article, Bulletin of AAPPS). See also, C. VL. Pan et al., Multi-Color Harmonic Synthesized Laser System For Laser Processing And Laser Processing Method Using Multi-Color Harmonic Synthesized Laser, U. S. patent 9,031,101 and Taiwan patent I490068Chan-Shan Yang, Chih-Hsuan Lin, Alexey Zaytsev, Kuei-Chung Teng, Tsing-Hua Her, Ci-Ling Pan*, Femtosecond laser ablation of polymethylmethacrylate via dual-color synthesized waveform, Appl. Phys. Lett., 106:051902 (2015) (first report of phase dependence of laser processing).
  9. Ci-Ling Pan and Jin-Wei Shi, Ultrawide-Band Sub-THz Photonic Wireless Links, Chapter 3, in Microwave Photonics, ed., C. H. Lee, 2nd ed., CRC Press, Taylor & Francis, 2013. See also, J.-W. Shi, C.-B. Huang, and Ci-Ling Pan*, Millimeter-wave Photonic Wireless Links for Very-High Data Rate Communication, invited review article, NPG Asia Materials, 3:41(2011) . (Progress towards radio-over-fiber wireless data transmission up to 20 Gbit/s at 0.1 THz).
  10. Alexey Zaytsev*, Chih-Hsuan Lin, Yi-Jing You, Chia-Chun Chung, Chi-Luen Wang, and Ci-Ling Pan*, Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers, Optics Express 21:16056(2013). (Novel fiber-laser-based approach to supercontinuum generation) Taiwan patent I474060US patent 9, 256,114.. See also, A. K. Zaytsev*, C. H. Lin, Y. J. You, F. H. Tsai, C. L. Wang and C. L. Pan*, Controllable noise-like operation regime in Yb:doped dispersion-mapped fiber ring laser, Laser Phys. Lett. 10:045104(2013), Taiwan patent I509923U.S. Patent 8,897,325 ; Yi-Jing You, Chengming Wang, Yi-Lun Lin, Alexey Zaytsev, Ping Xue and Ci-Ling Pan*, Ultrahigh-resolution optical coherence tomography at 1.3 gm central wavelength by using a supercontinuum source pumped by noise-like pulses, Laser Phys. Lett., 13:025101(2016) D
 全部著作
 
 

 

瀏覽數: